Integrability of SLE via conformal welding of random surfaces

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Morris Ang, Nina Holden, Xin Sun
{"title":"Integrability of SLE via conformal welding of random surfaces","authors":"Morris Ang,&nbsp;Nina Holden,&nbsp;Xin Sun","doi":"10.1002/cpa.22180","DOIUrl":null,"url":null,"abstract":"<p>We demonstrate how to obtain integrability results for the Schramm-Loewner evolution (SLE) from Liouville conformal field theory (LCFT) and the mating-of-trees framework for Liouville quantum gravity (LQG). In particular, we prove an exact formula for the law of a conformal derivative of a classical variant of SLE called <math>\n <semantics>\n <mrow>\n <msub>\n <mo>SLE</mo>\n <mi>κ</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ρ</mi>\n <mo>−</mo>\n </msub>\n <mo>;</mo>\n <msub>\n <mi>ρ</mi>\n <mo>+</mo>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{SLE}_\\kappa (\\rho _-;\\rho _+)$</annotation>\n </semantics></math>. Our proof is built on two connections between SLE, LCFT, and mating-of-trees. Firstly, LCFT and mating-of-trees provide equivalent but complementary methods to describe natural random surfaces in LQG. Using a novel tool that we call the <i>uniform embedding</i> of an LQG surface, we extend earlier equivalence results by allowing fewer marked points and more generic singularities. Secondly, the conformal welding of these random surfaces produces SLE curves as their interfaces. In particular, we rely on the conformal welding results proved in our companion paper Ang, Holden and Sun (2023). Our paper is an essential part of a program proving integrability results for SLE, LCFT, and mating-of-trees based on these two connections.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22180","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate how to obtain integrability results for the Schramm-Loewner evolution (SLE) from Liouville conformal field theory (LCFT) and the mating-of-trees framework for Liouville quantum gravity (LQG). In particular, we prove an exact formula for the law of a conformal derivative of a classical variant of SLE called SLE κ ( ρ ; ρ + ) $\operatorname{SLE}_\kappa (\rho _-;\rho _+)$ . Our proof is built on two connections between SLE, LCFT, and mating-of-trees. Firstly, LCFT and mating-of-trees provide equivalent but complementary methods to describe natural random surfaces in LQG. Using a novel tool that we call the uniform embedding of an LQG surface, we extend earlier equivalence results by allowing fewer marked points and more generic singularities. Secondly, the conformal welding of these random surfaces produces SLE curves as their interfaces. In particular, we rely on the conformal welding results proved in our companion paper Ang, Holden and Sun (2023). Our paper is an essential part of a program proving integrability results for SLE, LCFT, and mating-of-trees based on these two connections.

随机表面保形焊接SLE的可积性
我们证明了如何从Liouville共形场论(LCFT)和Liouville量子引力(LQG)的树框架匹配中获得Schramm-Loewner演化(SLE)的可积性结果。特别地,我们证明了SLE经典变体的保角导数定律的一个精确公式,称为SLEκ(ρ−;ρ+)$\算子名{SLE}_\kappa(\rho-;\rho+)$。我们的证明建立在SLE、LCFT和树木交配之间的两个联系上。首先,LCFT和树的匹配为描述LQG中的自然随机曲面提供了等价但互补的方法。使用一种新的工具,我们称之为LQG曲面的均匀嵌入,我们通过允许更少的标记点和更多的一般奇点来扩展早期的等价结果。其次,这些随机表面的保角焊接产生SLE曲线作为它们的界面。特别是,我们依赖于我们的配套论文Ang、Holden和Sun(2023)中证明的保形焊接结果。我们的论文是证明SLE、LCFT和基于这两个连接的树的匹配的可积性结果的程序的重要部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信