φ24$\varphi^4_2$和φ34$\varphi^4_3$测度的Log-Sobolev不等式

IF 3.1 1区 数学 Q1 MATHEMATICS
Roland Bauerschmidt, Benoit Dagallier
{"title":"φ24$\\varphi^4_2$和φ34$\\varphi^4_3$测度的Log-Sobolev不等式","authors":"Roland Bauerschmidt,&nbsp;Benoit Dagallier","doi":"10.1002/cpa.22173","DOIUrl":null,"url":null,"abstract":"<p>The continuum <math>\n <semantics>\n <msubsup>\n <mi>φ</mi>\n <mn>2</mn>\n <mn>4</mn>\n </msubsup>\n <annotation>$\\varphi ^4_2$</annotation>\n </semantics></math> and <math>\n <semantics>\n <msubsup>\n <mi>φ</mi>\n <mn>3</mn>\n <mn>4</mn>\n </msubsup>\n <annotation>$\\varphi ^4_3$</annotation>\n </semantics></math> measures are shown to satisfy a log-Sobolev inequality uniformly in the lattice regularisation under the optimal assumption that their susceptibility is bounded. In particular, this applies to all coupling constants in any finite volume, and uniformly in the volume in the entire high temperature phases of the <math>\n <semantics>\n <msubsup>\n <mi>φ</mi>\n <mn>2</mn>\n <mn>4</mn>\n </msubsup>\n <annotation>$\\varphi ^4_2$</annotation>\n </semantics></math> and <math>\n <semantics>\n <msubsup>\n <mi>φ</mi>\n <mn>3</mn>\n <mn>4</mn>\n </msubsup>\n <annotation>$\\varphi ^4_3$</annotation>\n </semantics></math> models.</p><p>The proof uses a general criterion for the log-Sobolev inequality in terms of the Polchinski (renormalisation group) equation, a recently proved remarkable correlation inequality for Ising models with general external fields, the Perron–Frobenius theorem, and bounds on the susceptibilities of the <math>\n <semantics>\n <msubsup>\n <mi>φ</mi>\n <mn>2</mn>\n <mn>4</mn>\n </msubsup>\n <annotation>$\\varphi ^4_2$</annotation>\n </semantics></math> and <math>\n <semantics>\n <msubsup>\n <mi>φ</mi>\n <mn>3</mn>\n <mn>4</mn>\n </msubsup>\n <annotation>$\\varphi ^4_3$</annotation>\n </semantics></math> measures obtained using skeleton inequalities.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 5","pages":"2579-2612"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22173","citationCount":"0","resultStr":"{\"title\":\"Log-Sobolev inequality for the \\n \\n \\n φ\\n 2\\n 4\\n \\n $\\\\varphi ^4_2$\\n and \\n \\n \\n φ\\n 3\\n 4\\n \\n $\\\\varphi ^4_3$\\n measures\",\"authors\":\"Roland Bauerschmidt,&nbsp;Benoit Dagallier\",\"doi\":\"10.1002/cpa.22173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The continuum <math>\\n <semantics>\\n <msubsup>\\n <mi>φ</mi>\\n <mn>2</mn>\\n <mn>4</mn>\\n </msubsup>\\n <annotation>$\\\\varphi ^4_2$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <msubsup>\\n <mi>φ</mi>\\n <mn>3</mn>\\n <mn>4</mn>\\n </msubsup>\\n <annotation>$\\\\varphi ^4_3$</annotation>\\n </semantics></math> measures are shown to satisfy a log-Sobolev inequality uniformly in the lattice regularisation under the optimal assumption that their susceptibility is bounded. In particular, this applies to all coupling constants in any finite volume, and uniformly in the volume in the entire high temperature phases of the <math>\\n <semantics>\\n <msubsup>\\n <mi>φ</mi>\\n <mn>2</mn>\\n <mn>4</mn>\\n </msubsup>\\n <annotation>$\\\\varphi ^4_2$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <msubsup>\\n <mi>φ</mi>\\n <mn>3</mn>\\n <mn>4</mn>\\n </msubsup>\\n <annotation>$\\\\varphi ^4_3$</annotation>\\n </semantics></math> models.</p><p>The proof uses a general criterion for the log-Sobolev inequality in terms of the Polchinski (renormalisation group) equation, a recently proved remarkable correlation inequality for Ising models with general external fields, the Perron–Frobenius theorem, and bounds on the susceptibilities of the <math>\\n <semantics>\\n <msubsup>\\n <mi>φ</mi>\\n <mn>2</mn>\\n <mn>4</mn>\\n </msubsup>\\n <annotation>$\\\\varphi ^4_2$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <msubsup>\\n <mi>φ</mi>\\n <mn>3</mn>\\n <mn>4</mn>\\n </msubsup>\\n <annotation>$\\\\varphi ^4_3$</annotation>\\n </semantics></math> measures obtained using skeleton inequalities.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 5\",\"pages\":\"2579-2612\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22173\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22173\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22173","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在磁化率有界的最优假设下,连续统φ24$\varphi^4_2$和φ34$\varphi^4_3$测度在格正则化中一致满足log-Sobolev不等式。特别地,这适用于任何有限体积中的所有耦合常数,并且在φ24$\varphi^4_2$和φ34$\varphi^4_3$模型的整个高温阶段的体积中均匀地适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Log-Sobolev inequality for the φ 2 4 $\varphi ^4_2$ and φ 3 4 $\varphi ^4_3$ measures

The continuum φ 2 4 $\varphi ^4_2$ and φ 3 4 $\varphi ^4_3$ measures are shown to satisfy a log-Sobolev inequality uniformly in the lattice regularisation under the optimal assumption that their susceptibility is bounded. In particular, this applies to all coupling constants in any finite volume, and uniformly in the volume in the entire high temperature phases of the φ 2 4 $\varphi ^4_2$ and φ 3 4 $\varphi ^4_3$  models.

The proof uses a general criterion for the log-Sobolev inequality in terms of the Polchinski (renormalisation group) equation, a recently proved remarkable correlation inequality for Ising models with general external fields, the Perron–Frobenius theorem, and bounds on the susceptibilities of the φ 2 4 $\varphi ^4_2$ and φ 3 4 $\varphi ^4_3$ measures obtained using skeleton inequalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信