{"title":"近临界Ising模型的Log-Sobolev不等式","authors":"Roland Bauerschmidt, Benoit Dagallier","doi":"10.1002/cpa.22172","DOIUrl":null,"url":null,"abstract":"<p>For general ferromagnetic Ising models whose coupling matrix has bounded spectral radius, we show that the log-Sobolev constant satisfies a simple bound expressed only in terms of the susceptibility of the model. This bound implies very generally that the log-Sobolev constant is uniform in the system size up to the critical point (including on lattices), without using any mixing conditions. Moreover, if the susceptibility satisfies the mean-field bound as the critical point is approached, our bound implies that the log-Sobolev constant depends polynomially on the distance to the critical point and on the volume. In particular, this applies to the Ising model on subsets of <math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {Z}^d$</annotation>\n </semantics></math> when <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>></mo>\n <mn>4</mn>\n </mrow>\n <annotation>$d&gt;4$</annotation>\n </semantics></math>.</p><p>The proof uses a general criterion for the log-Sobolev inequality in terms of the Polchinski (renormalisation group) equation, a recently proved remarkable correlation inequality for Ising models with general external fields, the Perron–Frobenius theorem, and the log-Sobolev inequality for product Bernoulli measures.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 4","pages":"2568-2576"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22172","citationCount":"0","resultStr":"{\"title\":\"Log-Sobolev inequality for near critical Ising models\",\"authors\":\"Roland Bauerschmidt, Benoit Dagallier\",\"doi\":\"10.1002/cpa.22172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For general ferromagnetic Ising models whose coupling matrix has bounded spectral radius, we show that the log-Sobolev constant satisfies a simple bound expressed only in terms of the susceptibility of the model. This bound implies very generally that the log-Sobolev constant is uniform in the system size up to the critical point (including on lattices), without using any mixing conditions. Moreover, if the susceptibility satisfies the mean-field bound as the critical point is approached, our bound implies that the log-Sobolev constant depends polynomially on the distance to the critical point and on the volume. In particular, this applies to the Ising model on subsets of <math>\\n <semantics>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <annotation>$\\\\mathbb {Z}^d$</annotation>\\n </semantics></math> when <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>></mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$d&gt;4$</annotation>\\n </semantics></math>.</p><p>The proof uses a general criterion for the log-Sobolev inequality in terms of the Polchinski (renormalisation group) equation, a recently proved remarkable correlation inequality for Ising models with general external fields, the Perron–Frobenius theorem, and the log-Sobolev inequality for product Bernoulli measures.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 4\",\"pages\":\"2568-2576\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22172\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22172\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22172","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Log-Sobolev inequality for near critical Ising models
For general ferromagnetic Ising models whose coupling matrix has bounded spectral radius, we show that the log-Sobolev constant satisfies a simple bound expressed only in terms of the susceptibility of the model. This bound implies very generally that the log-Sobolev constant is uniform in the system size up to the critical point (including on lattices), without using any mixing conditions. Moreover, if the susceptibility satisfies the mean-field bound as the critical point is approached, our bound implies that the log-Sobolev constant depends polynomially on the distance to the critical point and on the volume. In particular, this applies to the Ising model on subsets of when .
The proof uses a general criterion for the log-Sobolev inequality in terms of the Polchinski (renormalisation group) equation, a recently proved remarkable correlation inequality for Ising models with general external fields, the Perron–Frobenius theorem, and the log-Sobolev inequality for product Bernoulli measures.