{"title":"The Role of SUMO1 Modification of SOX9 in Cartilage Development Stimulated by Zinc Ions in Mice.","authors":"Na Xue, Jing Zhao, Jing Yin, Liang Liu, Zhong Yang, Shuchao Zhai, Xiyun Bian, Xiang Gao","doi":"10.1080/15476278.2025.2460269","DOIUrl":"10.1080/15476278.2025.2460269","url":null,"abstract":"<p><p>Zinc ions play a pivotal role in facilitating the development of cartilage in mice. Nevertheless, the precise underlying mechanism remains elusive. Our investigation was centered on elucidating the impact of zinc deficiency on cartilage maturation by modulating SUMO1 and UBC9 at both the protein and mRNA levels. We administered a regimen inducing zinc deficiency to gravid mice from E0.5 until euthanasia. Subsequently, we subjected the embryos to scrutiny employing HE, Safranin O staining and IHC. Primary chondrocytes were isolated from fetal mouse femoral condyles and utilized for Western blot analysis to discern the expression profiles of SUMO1, SUMO2/3, UBC9, SOX9, MMP13, Collagen II, RUNX2, and aggrecan. Furthermore, ATDC5 murine chondrocytes were subjected to treatment with ZnCl<sub>2</sub>, followed by RT-PCR assessment to scrutinize the expression levels of MMP13, Collagen II, RUNX2, and aggrecan. Additionally, we conducted Co-IP assays on ZnCl<sub>2</sub>-treated ATDC5 cells to explore the interaction between SOX9 and SUMO1. Our investigation unveiled that zinc deficiency led to a reduction in cartilage development, as evidenced by the HE results in fetal murine femur. Moreover, diminished expression levels of SUMO1 and UBC9 were observed in the IHC and Western blot results. Furthermore, Western blot and Co-IP assays revealed an augmented interaction between SOX9 and SUMO1, which was potentiated by ZnCl<sub>2</sub> treatment. Significantly, mutations at the SUMOylation site of SOX9 resulted in alterations in the expression patterns of crucial chondrogenesis factors. This research underscores how zinc ions promote cartilage development through the modification of SOX9 by SUMO1.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"21 1","pages":"2460269"},"PeriodicalIF":1.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801356/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143190193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-04-25DOI: 10.1007/s11571-025-10247-9
Ali Turab, Josué-Antonio Nescolarde-Selva, Farhan Ullah, Andrés Montoyo, Cicik Alfiniyah, Wutiphol Sintunavarat, Doaa Rizk, Shujaat Ali Zaidi
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Deep neural networks and stochastic methods for cognitive modeling of rat behavioral dynamics in <ns0:math><ns0:mi>T</ns0:mi></ns0:math> -mazes.","authors":"Ali Turab, Josué-Antonio Nescolarde-Selva, Farhan Ullah, Andrés Montoyo, Cicik Alfiniyah, Wutiphol Sintunavarat, Doaa Rizk, Shujaat Ali Zaidi","doi":"10.1007/s11571-025-10247-9","DOIUrl":"https://doi.org/10.1007/s11571-025-10247-9","url":null,"abstract":"<p><p>Modeling animal decision-making requires mathematical rigor and computational analysis to capture underlying cognitive mechanisms. This study presents a cognitive model for rat decision-making behavior in <math><mi>T</mi></math> -mazes by combining stochastic methods with deep neural architectures. The model adapts Wyckoff's stochastic framework, originally grounded in Bush's discrimination learning theory, to describe probabilistic transitions between directional choices under reinforcement contingencies. The existence and uniqueness of solutions are demonstrated via fixed-point theorems, ensuring the formulation is well-posed. The asymptotic properties of the system are examined under boundary conditions to understand the convergence behavior of decision probabilities across trials. Empirical validation is performed using Monte Carlo simulations to compare expected trajectories with the model's predictive output. The dataset comprises spatial trajectory recordings of rats navigating toward food rewards under controlled experimental protocols. Trajectories are preprocessed through statistical filtering, augmented to address data imbalance, and embedded using t-SNE to visualize separability across behavioral states. A hybrid convolutional-recurrent neural network (CNN-LSTM) is trained on these representations and achieves a classification accuracy of 82.24%, outperforming conventional machine learning models, including support vector machines and random forests. In addition to discrete choice prediction, the network reconstructs continuous paths, enabling full behavioral sequence modeling from partial observations. The integration of stochastic dynamics and deep learning develops a computational basis for analyzing spatial decision-making in animal behavior. The proposed approach contributes to computational models of cognition by linking observable behavior to internal processes in navigational tasks.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"66"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143971746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maize 4-coumarate coenzyme A ligase <i>Zm4CL-like9</i> gene positively regulates drought stress response in <i>Arabidopsis thaliana</i>.","authors":"Jiayi Fan, Zhipeng Luo, Yuankai Wang, Peng Jiao, Qingxu Wang, Yuntao Dai, Shuyan Guan, Yiyong Ma, Huiwei Yu, Siyan Liu","doi":"10.1080/21645698.2025.2469942","DOIUrl":"10.1080/21645698.2025.2469942","url":null,"abstract":"<p><p>Maize is a major food crop in China, and drought is one of the major abiotic stresses that threaten the growth and development of the crop, seriously affecting the crop yield. 4-coumaric acid coenzyme A ligase (<i>4CL</i>) is a key enzyme in the phenylpropane metabolic pathway, which can regulate the lignin content of the plant and play an important role in the plant's resistance to drought stress, plays an important role in plant resistance to drought stress. In the present study, we screened the differentially expressed up-regulated gene <i>Zm4CL-like9</i> under drought stress by pre-transcriptome sequencing data (PRJNA793522) in the laboratory, and analyzed the significant up-regulation of <i>Zm4CL-like9</i> gene in roots under drought stress by qRT-PCR(Real-Time Quantitative Reverse Transcription PCR). The results of prokaryotic expression experiments showed that the protein encoded by the <i>Zm4CL-like9</i> gene was able to be expressed in prokaryotic cells and could effectively improve the drought tolerance of E. coli. Phenotypic analysis of transgenic <i>Arabidopsis</i> plants under drought stress revealed that seed germination rate, root length, and plant survival after drought rehydration were significantly higher in transgenic <i>Zm4CL-like9 Arabidopsis</i> compared with wild-type <i>Arabidopsis</i>; physiological and biochemical indexes revealed that peroxidase activity, proline (Pro) content, and chlorophyll content were significantly higher in transgenic <i>Arabidopsis</i> compared with wild-type <i>Arabidopsis</i>. Under drought stress, the expression of drought-related genes was significantly up-regulated in transgenic <i>Arabidopsis</i> compared with wild-type <i>Arabidopsis</i>. Taken together, the <i>Zm4CL-like9</i> gene enhances plant resistance to drought stress by reducing reactive oxygen species accumulation in plants.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"199-215"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853610/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143484741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-05-14DOI: 10.1007/s11571-025-10265-7
Seda Günakın, Zehra Gülru Çam Taşkıran
{"title":"A memristive synaptic circuit and optimization algorithm for synaptic control.","authors":"Seda Günakın, Zehra Gülru Çam Taşkıran","doi":"10.1007/s11571-025-10265-7","DOIUrl":"https://doi.org/10.1007/s11571-025-10265-7","url":null,"abstract":"<p><p>In order for the backpropagation training method, which is widely used for machine learning inference layer, to be directly applied to memristor crossbar arrays, either the weight change must be linear, or since the memristance change is not constant over time, the current memristance value must be kept in memory or changes must be controlled with an algorithm suitable for the used memristance function. To overcome the memory and energy drawbacks of this non-linearity, in this study, the parameters of a memristive circuit that can implement positive and negative weights were determined by the optimization method, using two charge-controlled mathematial memristor equations and a flux-controlled memristor emulator previously defined in the literature. In this way, the simplest linear control of weight change is achieved. Using the artificial bee colony algorithm, the passive element values of a circuit that can perform weight control up to 0.02 sensitivity and the duration of the applied control signal were determined. According to the experimental study, it was seen that weight control was achieved with a mean square error of 2.33 <math><mo>×</mo></math> 10<sup>-4</sup>. Also the tracking rate of software-based test accuracy is 98.186%. With the proposed optimization method and cost function, linear control can be achieved by determining the parameters needed for online training with any memristor element.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"73"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078898/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144076449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Joint disentangled representation and domain adversarial training for EEG-based cross-session biometric recognition in single-task protocols.","authors":"Honggang Liu, Xuanyu Jin, Dongjun Liu, Wanzeng Kong, Jiajia Tang, Yong Peng","doi":"10.1007/s11571-024-10214-w","DOIUrl":"10.1007/s11571-024-10214-w","url":null,"abstract":"<p><p>The increasing adoption of wearable technologies highlights the potential of electroencephalogram (EEG) signals for biometric recognition. However, the intrinsic variability in cross-session EEG data presents substantial challenges in maintaining model stability and reliability. Moreover, the diversity within single-task protocols complicates achieving consistent and generalized model performance. To address these issues, we propose the Joint Disentangled Representation with Domain Adversarial Training (JDR-DAT) framework for EEG-based cross-session biometric recognition within single-task protocols. The JDR-DAT framework disentangles identity-specific features through mutual information estimation and incorporates domain adversarial training to enhance longitudinal robustness. Extensive experiments on longitudinal EEG data from two publicly available single-task protocol datasets-RSVP-based (Rapid Serial Visual Presentation) and MI-based (Motor Imagery)-demonstrate the efficacy of the JDR-DAT framework, with the proposed method achieving average accuracies of 85.83% and 96.72%, respectively.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"31"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757832/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OrganogenesisPub Date : 2025-12-01Epub Date: 2025-04-05DOI: 10.1080/15476278.2025.2489667
Lanxia Wu, Wenxuan Sun, Linjie Huang, Lin Sun, Jinhua Dou, Guohua Lu
{"title":"Calcium Imaging in Vivo: How to Correctly Select and Apply Fiber Optic Photometric Indicators.","authors":"Lanxia Wu, Wenxuan Sun, Linjie Huang, Lin Sun, Jinhua Dou, Guohua Lu","doi":"10.1080/15476278.2025.2489667","DOIUrl":"10.1080/15476278.2025.2489667","url":null,"abstract":"<p><p>Fiber-photometric is a novel optogenetic method for recording neural activity in vivo, which allows the use of calcium indicators to observe and study the relationship between neural activity and behavior in free-ranging animals. Calcium indicators also convert changes in calcium concentration in cells or tissues into recordable fluorescent signals, which can then be observed using the system of fiber-photometric. To date, there is a paucity of relevant literature on the proper selection and application of fiber-photometric indicators. Therefore, this paper will detail how to correctly select and apply fiber-photometer indicators in four sections: the basic principle of optical fiber photometry, the selection of calcium fluorescent probes and viral vector systems, and the measurement of specific expression of fluorescent proteins in specific tissues. Therefore, the correct use of suitable fiber optic recording indicators will greatly assist researchers in exploring the link between neuronal activity and neuropsychiatric disorders.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"21 1","pages":"2489667"},"PeriodicalIF":1.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143788769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Zhao, Jing Lan, Xiaolei Zhang, Yun Zhang, Cui Huang, Wenqiong Ma, Yingqiu Du, Haiming Zhao, Baohai Liu
{"title":"Two genetically modified insect-resistant maize events reduced fumonisin pollution under the stress of Lepidoptera in China.","authors":"Lin Zhao, Jing Lan, Xiaolei Zhang, Yun Zhang, Cui Huang, Wenqiong Ma, Yingqiu Du, Haiming Zhao, Baohai Liu","doi":"10.1080/21645698.2025.2488882","DOIUrl":"10.1080/21645698.2025.2488882","url":null,"abstract":"<p><p>China is the second-largest maize producer and consumer globally. During maize production, <i>Fusarium</i> spp. often gets infected, and mycotoxins like fumonisin contaminate it. Fumonisin has become the most widely polluted mycotoxin type in China. Planting genetically - modified maize is an economical and effective approach to reducing fumonisin pollution in products. This study aimed to evaluate the effectiveness of two transgenic events from China, <i>Bt</i>-Cry1Ab-Ma CM8101 and <i>Bt</i>-Cry1Ab, Cry2Ab, G10evo Ruifeng 8, in reducing fumonisin pollution in maize under the stress of natural and Lepidopteran pests (<i>Ostrinia furnacalis, Mythimna separate, Helicoverpa armigera</i>) in two Chinese sites from 2018-2019. The results showed that under the stress of Lepidoptera insects (<i>O. furnacalis</i> and <i>H. armigera</i>), the total amount of fumonisin in <i>Bt</i> maize decreased significantly. Maize with two insect-resistant transgenic events reduced fumonisin by over 70%. In years with serious fumonisin pollution, the effects of CM8101 and Ruifeng 8 on reducing pollution were more significant. <i>Bt</i> maize can provide area-wide pest management and thus contribute to a progressive phase-down of chemical pesticide use. Genetically-modified insecticidal crops can ensure food and nutrition security, contribute to the sustainable intensification of China's agriculture, and reduce the environmental footprint of food systems.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"329-339"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143797013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ariyani Rinaldi, Nurzatil Sharleeza Mat Jalaluddin, Rosila Bee Mohd Hussain, Adilah Abdul Ghapor
{"title":"Building public trust and acceptance towards spray-on RNAi biopesticides: lessons from current ethical, legal and social discourses.","authors":"Ariyani Rinaldi, Nurzatil Sharleeza Mat Jalaluddin, Rosila Bee Mohd Hussain, Adilah Abdul Ghapor","doi":"10.1080/21645698.2025.2510735","DOIUrl":"10.1080/21645698.2025.2510735","url":null,"abstract":"<p><p>Advances in New Plant Breeding Techniques (NBTs), particularly spray-on RNA interference (RNAi) biopesticides, necessitates a reevaluation of existing regulatory and governance frameworks. While spray-on RNAi technologies offer promising solutions for sustainable crop protection and targeted pest control without altering plant genomes, they also raise important ethical, legal, and social implications (ELSI). This paper explores current ELSI discourses surrounding spray-on RNAi biopesticides, such as issues of environmental risk, regulatory ambiguity, corporate control and public acceptance. The study also highlights the importance to incorporate trust as an ethical element in developing regulatory and governance framework for the RNAi technology to increase public acceptance toward the technology. These findings contribute to the broader discourse on the governance of novel biotechnologies in agriculture, offering guidance for future regulatory design tailored to the unique characteristics of spray-on RNAi-based interventions.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"398-412"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144163783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-13DOI: 10.1007/s11571-024-10186-x
Xiaoliang Guo, Shuo Zhai
{"title":"A novel adaptive lightweight multimodal efficient feature inference network ALME-FIN for EEG emotion recognition.","authors":"Xiaoliang Guo, Shuo Zhai","doi":"10.1007/s11571-024-10186-x","DOIUrl":"10.1007/s11571-024-10186-x","url":null,"abstract":"<p><p>Enhancing the accuracy of emotion recognition models through multimodal learning is a common approach. However, challenges such as insufficient modal feature learning in multimodal inference and scarcity of sample data continue to pose obstacles that need to be overcome. Therefore, we propose a novel adaptive lightweight multimodal efficient feature inference network (ALME-FIN). We introduce a time-domain lightweight adaptive network (TDLAN) and a two-dimensional dynamic focusing network (TDDFN) for multimodal feature learning. The TDLAN incorporates the denoising process as an integral part of network training, achieving adaptive denoising for each sample through the continuous optimization of the trainable filtering threshold. Simultaneously, it incorporates an interactive convolutional sampling module, enabling lightweight multi-scale feature extraction in the time domain. TDDFN effectively extracts core image features while filtering out redundancies. During the training process, the Multi-network dynamic gradient adjustment framework (MDGAF) dynamically monitors the feature learning efficacy across different modalities. It timely adjusts the training gradients of networks to allocate additional optimization time for under-optimized modalities, thereby maximizing the utilization of multimodal feature information. Moreover, the introduction of a Multi-class relationship interaction module prior to the classifier aids the model in clearly understanding the relationships among different category samples. This approach enables the model to achieve relatively accurate emotion recognition even in scenarios of limited sample availability. Compared to existing multimodal learning techniques, ALME-FIN exhibits a more efficient multimodal feature inference method that can achieve satisfactory emotional recognition performance even with a limited number of samples.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"24"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-02-05DOI: 10.1007/s11571-025-10227-z
Zhihui Wang, Xindan Wei, Lixia Duan
{"title":"Regulatory mechanism of inhibitory interneurons with time-delay on epileptic seizures under sinusoidal sensory stimulation.","authors":"Zhihui Wang, Xindan Wei, Lixia Duan","doi":"10.1007/s11571-025-10227-z","DOIUrl":"10.1007/s11571-025-10227-z","url":null,"abstract":"<p><p>Epilepsy is a neurological disorder in which complex electrophysiological processes are closely linked to inherent nonlinear kinetic properties. This study investigates the effects of sinusoidal sensory stimulation bias and time-delay on the dynamics of epileptic seizures within a corticothalamic neural network model. The results indicate that an increase in sensory stimulation bias can prematurely terminate seizures, and high-frequency stimulation can induce a phenomenon of frequency resonance. Meanwhile, discharge states transitions are associated with the emergence of bifurcation points. Time-delay exerts a significant regulatory influence on pathways with delay embedding (I2-PY), whereas its impact on pathways without delay embedding (I1-I1 and thalamic relay nucleus (TC)-I2) is negligible. Under sinusoidal sensory stimulation, the responses of three pathways (I1-I1, I1-PY, and I2-PY) associated with inhibitory interneurons reveal that the inhibitory properties of interneurons can suppress seizures; however, an excessively strong inhibitory effect may also precipitate seizures and facilitate state transitions. These findings contribute to a deeper understanding of seizure dynamics and may guide future research in the transmission and evolution of seizures.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"37"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799515/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}