Dynamic analysis of multi-spiral chaotic inertia model with a cyclic configuration involving four homogeneous HNN cells: stability analysis, analog and digital verifications.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-04-18 DOI:10.1007/s11571-025-10240-2
Jean Baptiste Koinfo, Donghua Jiang, Jean Chamberlain Chedjou, Jacques Kengne, Khabibullo Nosirov
{"title":"Dynamic analysis of multi-spiral chaotic inertia model with a cyclic configuration involving four homogeneous HNN cells: stability analysis, analog and digital verifications.","authors":"Jean Baptiste Koinfo, Donghua Jiang, Jean Chamberlain Chedjou, Jacques Kengne, Khabibullo Nosirov","doi":"10.1007/s11571-025-10240-2","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the behavior of a Hopfield neural network consisting of four interconnected inertial neurons arranged in a loop configuration. The mathematical equation that governs the overall dynamic of the model is consists of a set of eight first-order ordinary differential equations (ODEs) with odd symmetry. The system has 81 equilibrium points, some of which undergo multiple Hopf bifurcations as a control parameter is varied. The maximum number of coexisting states is related to the maximum number of active equilibrium points. Through numerical investigations, intriguing nonlinear properties are discovered, including both homogeneous and heterogeneous multistability and the coexistence of up to sixteen bifurcation branches, the presence of multi-spiral chaos, crisis phenomenon, period splitting and the oscillation death phenomenon. In order to obtain a comprehensive understanding of the dynamics, various tools are used, such as phase portraits, bifurcation diagrams, Poincare maps, frequency spectra, Lyapunov exponent spectra, and attraction basins. A Significant achievement of this study is the demonstration that coupling inertial neurons can be an effective method to generate multi-spiral chaotic signals. The overall dynamics is non-hidden and meticulous adjustment of the gradient connected to the fourth neuron allows to complete annihilate oscillations (no motion) in the neural network in a particular interval. Finally, an electronic circuit inspired by the coupled inertial neuron system is designed using Orcad-PSpice software and implemented using an Arduino-based microcontroller. The simulation results from PSpice and microcontroller confirm the findings from the theoretical analysis.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"63"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006643/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10240-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the behavior of a Hopfield neural network consisting of four interconnected inertial neurons arranged in a loop configuration. The mathematical equation that governs the overall dynamic of the model is consists of a set of eight first-order ordinary differential equations (ODEs) with odd symmetry. The system has 81 equilibrium points, some of which undergo multiple Hopf bifurcations as a control parameter is varied. The maximum number of coexisting states is related to the maximum number of active equilibrium points. Through numerical investigations, intriguing nonlinear properties are discovered, including both homogeneous and heterogeneous multistability and the coexistence of up to sixteen bifurcation branches, the presence of multi-spiral chaos, crisis phenomenon, period splitting and the oscillation death phenomenon. In order to obtain a comprehensive understanding of the dynamics, various tools are used, such as phase portraits, bifurcation diagrams, Poincare maps, frequency spectra, Lyapunov exponent spectra, and attraction basins. A Significant achievement of this study is the demonstration that coupling inertial neurons can be an effective method to generate multi-spiral chaotic signals. The overall dynamics is non-hidden and meticulous adjustment of the gradient connected to the fourth neuron allows to complete annihilate oscillations (no motion) in the neural network in a particular interval. Finally, an electronic circuit inspired by the coupled inertial neuron system is designed using Orcad-PSpice software and implemented using an Arduino-based microcontroller. The simulation results from PSpice and microcontroller confirm the findings from the theoretical analysis.

包含四个均匀HNN单元的循环构型多螺旋混沌惯性模型的动力学分析:稳定性分析、模拟和数字验证。
本文研究了由四个相互连接的惯性神经元组成的Hopfield神经网络的行为。控制模型整体动力学的数学方程由8个奇对称一阶常微分方程组成。系统有81个平衡点,随着控制参数的变化,一些平衡点发生多次Hopf分岔。共存状态的最大数目与活动平衡点的最大数目有关。通过数值研究,发现了系统具有均匀和非均匀多稳定性、多达16个分支共存、多螺旋混沌、危机现象、周期分裂和振荡死亡现象等非线性特性。为了获得对动力学的全面理解,使用了各种工具,如相位肖像,分岔图,庞加莱图,频谱,李亚普诺夫指数谱和吸引力盆地。本研究的一个重要成果是证明了耦合惯性神经元是产生多螺旋混沌信号的有效方法。整体动态是非隐藏的,并且连接到第四个神经元的梯度的精细调整允许在特定间隔内完成神经网络中的湮灭振荡(无运动)。最后,利用Orcad-PSpice软件设计了受耦合惯性神经元系统启发的电子电路,并利用基于arduino的微控制器实现。PSpice和单片机的仿真结果证实了理论分析的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信