{"title":"利用静息状态fMRI数据增强自闭症谱系障碍诊断的3T扩展初始网络。","authors":"V Kavitha, R Siva","doi":"10.1007/s11571-024-10202-0","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is one of the complicated neurodevelopmental disorders that impacts the daily functioning and social interactions of individuals. It includes diverse symptoms and severity levels, making it challenging to diagnose and treat efficiently. Various deep learning (DL) based methods have been developed for diagnosing ASD, which rely heavily on behavioral assessment. However, existing techniques have suffered from poor diagnostic outcomes, higher computational complexity, and overfitting issues. To address these challenges, this research work introduces an innovative framework called 3T Dilated Inception Network (3T-DINet) for effective ASD diagnosis using resting-state functional Magnetic Resonance Imaging (rs-fMRI) images. The proposed 3T-DINet technique designs a 3T dilated inception module that incorporates dilated convolutions along with the inception module, allowing it to extract multi-scale features from brain connectivity patterns. The 3T dilated inception module uses three distinct dilation rates (low, medium, and high) in parallel to determine local, mid-level, and global features from the brain. In addition, the proposed approach implements Residual networks (ResNet) to avoid the vanishing gradient problem and enhance the feature extraction ability. The model is further optimized using a Crossover-based Black Widow Optimization (CBWO) algorithm that fine-tunes the hyperparameters thereby enhancing the overall performance of the model. Further, the performance of the 3T-DINet model is evaluated using the five ASD datasets with distinct evaluation parameters. The proposed 3T-DINet technique achieved superior diagnosis results compared to recent previous works. From this simulation validation, it's clear that the 3T-DINet provides an excellent contribution to early ASD diagnosis and enhances patient treatment outcomes.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"22"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729590/pdf/","citationCount":"0","resultStr":"{\"title\":\"3T dilated inception network for enhanced autism spectrum disorder diagnosis using resting-state fMRI data.\",\"authors\":\"V Kavitha, R Siva\",\"doi\":\"10.1007/s11571-024-10202-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autism spectrum disorder (ASD) is one of the complicated neurodevelopmental disorders that impacts the daily functioning and social interactions of individuals. It includes diverse symptoms and severity levels, making it challenging to diagnose and treat efficiently. Various deep learning (DL) based methods have been developed for diagnosing ASD, which rely heavily on behavioral assessment. However, existing techniques have suffered from poor diagnostic outcomes, higher computational complexity, and overfitting issues. To address these challenges, this research work introduces an innovative framework called 3T Dilated Inception Network (3T-DINet) for effective ASD diagnosis using resting-state functional Magnetic Resonance Imaging (rs-fMRI) images. The proposed 3T-DINet technique designs a 3T dilated inception module that incorporates dilated convolutions along with the inception module, allowing it to extract multi-scale features from brain connectivity patterns. The 3T dilated inception module uses three distinct dilation rates (low, medium, and high) in parallel to determine local, mid-level, and global features from the brain. In addition, the proposed approach implements Residual networks (ResNet) to avoid the vanishing gradient problem and enhance the feature extraction ability. The model is further optimized using a Crossover-based Black Widow Optimization (CBWO) algorithm that fine-tunes the hyperparameters thereby enhancing the overall performance of the model. Further, the performance of the 3T-DINet model is evaluated using the five ASD datasets with distinct evaluation parameters. The proposed 3T-DINet technique achieved superior diagnosis results compared to recent previous works. From this simulation validation, it's clear that the 3T-DINet provides an excellent contribution to early ASD diagnosis and enhances patient treatment outcomes.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"22\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729590/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10202-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10202-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
3T dilated inception network for enhanced autism spectrum disorder diagnosis using resting-state fMRI data.
Autism spectrum disorder (ASD) is one of the complicated neurodevelopmental disorders that impacts the daily functioning and social interactions of individuals. It includes diverse symptoms and severity levels, making it challenging to diagnose and treat efficiently. Various deep learning (DL) based methods have been developed for diagnosing ASD, which rely heavily on behavioral assessment. However, existing techniques have suffered from poor diagnostic outcomes, higher computational complexity, and overfitting issues. To address these challenges, this research work introduces an innovative framework called 3T Dilated Inception Network (3T-DINet) for effective ASD diagnosis using resting-state functional Magnetic Resonance Imaging (rs-fMRI) images. The proposed 3T-DINet technique designs a 3T dilated inception module that incorporates dilated convolutions along with the inception module, allowing it to extract multi-scale features from brain connectivity patterns. The 3T dilated inception module uses three distinct dilation rates (low, medium, and high) in parallel to determine local, mid-level, and global features from the brain. In addition, the proposed approach implements Residual networks (ResNet) to avoid the vanishing gradient problem and enhance the feature extraction ability. The model is further optimized using a Crossover-based Black Widow Optimization (CBWO) algorithm that fine-tunes the hyperparameters thereby enhancing the overall performance of the model. Further, the performance of the 3T-DINet model is evaluated using the five ASD datasets with distinct evaluation parameters. The proposed 3T-DINet technique achieved superior diagnosis results compared to recent previous works. From this simulation validation, it's clear that the 3T-DINet provides an excellent contribution to early ASD diagnosis and enhances patient treatment outcomes.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.