The dynamic impact of adult neurogenesis on pattern separation within the dentate gyrus neural network.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-04-04 DOI:10.1007/s11571-025-10244-y
Kai Yang, Xiaojuan Sun, Zengbin Wang
{"title":"The dynamic impact of adult neurogenesis on pattern separation within the dentate gyrus neural network.","authors":"Kai Yang, Xiaojuan Sun, Zengbin Wang","doi":"10.1007/s11571-025-10244-y","DOIUrl":null,"url":null,"abstract":"<p><p>Pattern separation in the dentate gyrus (DG) is crucial for distinguishing similar memories. The DG continues to undergo neurogenesis throughout the lifespan, and adult hippocampus neurogenesis leads to the incorporation of thousands of adult-born granule cells (adult-born GCs) into the existing DG circuitry. These newborn GCs exhibit high excitability and are easier to respond to novel stimuli, which seems to be contrary to the requirement of pattern separation for high input specificity. Meanwhile, the changes brought about by the growth of adult-born GCs can not be ignored. Here, we build a biologically relevant model of the DG containing adult-born GCs and test it using the Modified National Institute of Standards and Technology (MNIST) database. By analyzing this model, the results show that the net effect of adult-born GCs to GCs is inhibition, thereby improving the sparsity of GCs and pattern separation. This provides computational evidence for \"indirect encoding\" of adult-born GCs. In addition, as adult-born GCs transition toward maturity, they have the following growth characteristics: decreased activity, increased coupling strength with feedback inhibition, and enhanced synaptic plasticity. We find that the decreased activity reduces pattern separation efficiency while the other characteristics increase pattern separation efficiency. Finally, given that the firing rate of entorhinal cortex (EC) neurons is influenced by numerous factors (such as the complexity of memory tasks), the input frequency to the DG should be within a range rather than being fixed. To address this, we gradually increase the input frequency and notice that the presence of adult-born GCs increases the adaptability of the DG neural network and thus improves the robustness of pattern separation.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"57"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971114/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10244-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pattern separation in the dentate gyrus (DG) is crucial for distinguishing similar memories. The DG continues to undergo neurogenesis throughout the lifespan, and adult hippocampus neurogenesis leads to the incorporation of thousands of adult-born granule cells (adult-born GCs) into the existing DG circuitry. These newborn GCs exhibit high excitability and are easier to respond to novel stimuli, which seems to be contrary to the requirement of pattern separation for high input specificity. Meanwhile, the changes brought about by the growth of adult-born GCs can not be ignored. Here, we build a biologically relevant model of the DG containing adult-born GCs and test it using the Modified National Institute of Standards and Technology (MNIST) database. By analyzing this model, the results show that the net effect of adult-born GCs to GCs is inhibition, thereby improving the sparsity of GCs and pattern separation. This provides computational evidence for "indirect encoding" of adult-born GCs. In addition, as adult-born GCs transition toward maturity, they have the following growth characteristics: decreased activity, increased coupling strength with feedback inhibition, and enhanced synaptic plasticity. We find that the decreased activity reduces pattern separation efficiency while the other characteristics increase pattern separation efficiency. Finally, given that the firing rate of entorhinal cortex (EC) neurons is influenced by numerous factors (such as the complexity of memory tasks), the input frequency to the DG should be within a range rather than being fixed. To address this, we gradually increase the input frequency and notice that the presence of adult-born GCs increases the adaptability of the DG neural network and thus improves the robustness of pattern separation.

齿状回(DG)中的模式分离对于区分相似记忆至关重要。齿状回在人的一生中会不断发生神经发生,成人海马的神经发生导致成千上万个成人出生的颗粒细胞(adult-born granule cells,adult-born GCs)加入到现有的齿状回回路中。这些新生颗粒细胞表现出高兴奋性,更容易对新刺激做出反应,这似乎与模式分离对高输入特异性的要求背道而驰。与此同时,成体GCs的生长所带来的变化也不容忽视。在此,我们建立了一个包含成体 GC 的 DG 生物相关模型,并使用修改后的美国国家标准与技术研究院(MNIST)数据库对其进行了测试。通过分析该模型,结果表明成体天生 GC 对 GC 的净效应是抑制,从而改善了 GC 的稀疏性和模式分离。这为成虫 GC 的 "间接编码 "提供了计算证据。此外,随着成体出生的 GC 向成熟过渡,它们具有以下生长特征:活性降低、反馈抑制耦合强度增加以及突触可塑性增强。我们发现,活动减少会降低模式分离效率,而其他特征则会提高模式分离效率。最后,鉴于内叶皮层(EC)神经元的发射率受多种因素(如记忆任务的复杂性)的影响,DG 的输入频率应在一定范围内而不是固定不变的。为了解决这个问题,我们逐步提高了输入频率,并注意到成体 GC 的存在提高了 DG 神经网络的适应性,从而改善了模式分离的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信