Neurofusionnet: a comprehensive framework for accurate epileptic seizure prediction from EEG data with hybrid meta-heuristic optimization algorithm.

IF 3.9 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-07-12 DOI:10.1007/s11571-025-10293-3
Tejashwini P S, Sahana L, Thriveni J, Venugopal K R
{"title":"Neurofusionnet: a comprehensive framework for accurate epileptic seizure prediction from EEG data with hybrid meta-heuristic optimization algorithm.","authors":"Tejashwini P S, Sahana L, Thriveni J, Venugopal K R","doi":"10.1007/s11571-025-10293-3","DOIUrl":null,"url":null,"abstract":"<p><p>This work uses cutting edge Electroencephalogram (EEG) data processing techniques to present a complete paradigm for epileptic seizure prediction. The methodology is a multi-step procedure that includes pre-processing, feature extraction, feature selection, and a new detection model based on deep learning for enhanced durability and accuracy. Bandpass filtering is used to reduce noise during the pre-processing phase, which improves the signal-to-noise ratio. EEG data quality is further improved using Independent Component Analysis, which finds and removes artifacts. Splitting continuous EEG data into fixed-duration segments, known as epoching, facilitates the investigation of discrete temporal patterns. Standard amplitude values are guaranteed by Z-score normalization, and seizure-related patterns are more sensitively detected when channels are selected using Common Spatial Patterns. Step one of the feature extraction processes involves statistical features and time-domain features. For spectrum information it is essential to recognizing seizures, frequency-domain features such as Power spectrum Density are extracted using a technique Fourier Transform. A full representation is obtained by extracting Time-Frequency Domain Features with the Wavelet Transform. Predictive power is increased by the efficient selection of discriminative characteristics through the use of a hybrid optimization model called Hybrid Chimp Enhanced Fox Optimization algorithm that combines optimization methods inspired by FOX and Chimp. The suggested NeuroFusionNet-based detection model combines Improved ShuffleNet V2, SqueezeNet, EfficientNet V2, and Multi Head Attention (MHA) based GhostNet V2, which captures complex patterns linked to epileptic episodes.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"113"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255646/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10293-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This work uses cutting edge Electroencephalogram (EEG) data processing techniques to present a complete paradigm for epileptic seizure prediction. The methodology is a multi-step procedure that includes pre-processing, feature extraction, feature selection, and a new detection model based on deep learning for enhanced durability and accuracy. Bandpass filtering is used to reduce noise during the pre-processing phase, which improves the signal-to-noise ratio. EEG data quality is further improved using Independent Component Analysis, which finds and removes artifacts. Splitting continuous EEG data into fixed-duration segments, known as epoching, facilitates the investigation of discrete temporal patterns. Standard amplitude values are guaranteed by Z-score normalization, and seizure-related patterns are more sensitively detected when channels are selected using Common Spatial Patterns. Step one of the feature extraction processes involves statistical features and time-domain features. For spectrum information it is essential to recognizing seizures, frequency-domain features such as Power spectrum Density are extracted using a technique Fourier Transform. A full representation is obtained by extracting Time-Frequency Domain Features with the Wavelet Transform. Predictive power is increased by the efficient selection of discriminative characteristics through the use of a hybrid optimization model called Hybrid Chimp Enhanced Fox Optimization algorithm that combines optimization methods inspired by FOX and Chimp. The suggested NeuroFusionNet-based detection model combines Improved ShuffleNet V2, SqueezeNet, EfficientNet V2, and Multi Head Attention (MHA) based GhostNet V2, which captures complex patterns linked to epileptic episodes.

Neurofusionnet:一个综合框架,准确预测癫痫发作从脑电图数据与混合元启发式优化算法。
这项工作使用尖端的脑电图(EEG)数据处理技术来呈现癫痫发作预测的完整范例。该方法是一个多步骤的过程,包括预处理、特征提取、特征选择和基于深度学习的新检测模型,以提高耐用性和准确性。在预处理阶段采用带通滤波降低噪声,提高了信噪比。使用独立分量分析进一步提高了EEG数据质量,该分析可以发现并去除伪影。将连续的脑电图数据分割成固定持续时间的片段,称为epoch,有助于研究离散的时间模式。标准幅度值由z分数归一化保证,当使用公共空间模式选择通道时,更敏感地检测到与癫痫发作相关的模式。特征提取的第一步涉及统计特征和时域特征。对于识别癫痫发作所必需的频谱信息,使用傅里叶变换技术提取功率谱密度等频域特征。利用小波变换提取时频域特征,得到了信号的完整表示。通过使用混合优化模型(称为hybrid Chimp Enhanced Fox optimization algorithm),结合了Fox和Chimp的优化方法,有效地选择了判别特征,从而提高了预测能力。建议的基于neurofusionnet的检测模型结合了Improved ShuffleNet V2、SqueezeNet、EfficientNet V2和基于多头注意(MHA)的GhostNet V2,可以捕获与癫痫发作相关的复杂模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信