Tejashwini P S, Sahana L, Thriveni J, Venugopal K R
{"title":"Neurofusionnet: a comprehensive framework for accurate epileptic seizure prediction from EEG data with hybrid meta-heuristic optimization algorithm.","authors":"Tejashwini P S, Sahana L, Thriveni J, Venugopal K R","doi":"10.1007/s11571-025-10293-3","DOIUrl":null,"url":null,"abstract":"<p><p>This work uses cutting edge Electroencephalogram (EEG) data processing techniques to present a complete paradigm for epileptic seizure prediction. The methodology is a multi-step procedure that includes pre-processing, feature extraction, feature selection, and a new detection model based on deep learning for enhanced durability and accuracy. Bandpass filtering is used to reduce noise during the pre-processing phase, which improves the signal-to-noise ratio. EEG data quality is further improved using Independent Component Analysis, which finds and removes artifacts. Splitting continuous EEG data into fixed-duration segments, known as epoching, facilitates the investigation of discrete temporal patterns. Standard amplitude values are guaranteed by Z-score normalization, and seizure-related patterns are more sensitively detected when channels are selected using Common Spatial Patterns. Step one of the feature extraction processes involves statistical features and time-domain features. For spectrum information it is essential to recognizing seizures, frequency-domain features such as Power spectrum Density are extracted using a technique Fourier Transform. A full representation is obtained by extracting Time-Frequency Domain Features with the Wavelet Transform. Predictive power is increased by the efficient selection of discriminative characteristics through the use of a hybrid optimization model called Hybrid Chimp Enhanced Fox Optimization algorithm that combines optimization methods inspired by FOX and Chimp. The suggested NeuroFusionNet-based detection model combines Improved ShuffleNet V2, SqueezeNet, EfficientNet V2, and Multi Head Attention (MHA) based GhostNet V2, which captures complex patterns linked to epileptic episodes.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"113"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255646/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10293-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This work uses cutting edge Electroencephalogram (EEG) data processing techniques to present a complete paradigm for epileptic seizure prediction. The methodology is a multi-step procedure that includes pre-processing, feature extraction, feature selection, and a new detection model based on deep learning for enhanced durability and accuracy. Bandpass filtering is used to reduce noise during the pre-processing phase, which improves the signal-to-noise ratio. EEG data quality is further improved using Independent Component Analysis, which finds and removes artifacts. Splitting continuous EEG data into fixed-duration segments, known as epoching, facilitates the investigation of discrete temporal patterns. Standard amplitude values are guaranteed by Z-score normalization, and seizure-related patterns are more sensitively detected when channels are selected using Common Spatial Patterns. Step one of the feature extraction processes involves statistical features and time-domain features. For spectrum information it is essential to recognizing seizures, frequency-domain features such as Power spectrum Density are extracted using a technique Fourier Transform. A full representation is obtained by extracting Time-Frequency Domain Features with the Wavelet Transform. Predictive power is increased by the efficient selection of discriminative characteristics through the use of a hybrid optimization model called Hybrid Chimp Enhanced Fox Optimization algorithm that combines optimization methods inspired by FOX and Chimp. The suggested NeuroFusionNet-based detection model combines Improved ShuffleNet V2, SqueezeNet, EfficientNet V2, and Multi Head Attention (MHA) based GhostNet V2, which captures complex patterns linked to epileptic episodes.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.