Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-09DOI: 10.1007/s11571-024-10192-z
Chengxian Gu, Xuanyu Jin, Li Zhu, Hangjie Yi, Honggang Liu, Xinyu Yang, Fabio Babiloni, Wanzeng Kong
{"title":"Cross-session SSVEP brainprint recognition using attentive multi-sub-band depth identity embedding learning network.","authors":"Chengxian Gu, Xuanyu Jin, Li Zhu, Hangjie Yi, Honggang Liu, Xinyu Yang, Fabio Babiloni, Wanzeng Kong","doi":"10.1007/s11571-024-10192-z","DOIUrl":"10.1007/s11571-024-10192-z","url":null,"abstract":"<p><p>Brainprint recognition technology, regarded as a promising biometric technology, encounters challenges stemming from the time-varied, low signal-to-noise ratio of brain signals, such as electroencephalogram (EEG). Steady-state visual evoked potentials (SSVEP) exhibit high signal-to-noise ratio and frequency locking, making them a promising paradigm for brainprint recognition. Consequently, the extraction of time-invariant identity information from SSVEP EEG signals is essential. In this paper, we propose an Attentive Multi-sub-band Depth Identity Embedding Learning Network for stable cross-session SSVEP brainprint recognition. To address the issue of low recognition accuracy across sessions, we introduce the Sub-band Attentive Frequency mechanism, which integrates the frequency-domain relevant characteristics of the SSVEP paradigm and focuses on exploring depth-frequency identity embedding information. Also, we employ Attentive Statistic Pooling to enhance the stability of frequency domain feature distributions across sessions. Extensive experimentation and validation were conducted on two multi-session SSVEP benchmark datasets. The experimental results show that our approach outperforms other state-of-art models on 2-second samples across sessions and has the potential to serve as a benchmark in multi-subject biometric recognition systems.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"15"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-09DOI: 10.1007/s11571-024-10200-2
Dongye Zhao, Bailu Si
{"title":"Formation of cognitive maps in large-scale environments by sensorimotor integration.","authors":"Dongye Zhao, Bailu Si","doi":"10.1007/s11571-024-10200-2","DOIUrl":"10.1007/s11571-024-10200-2","url":null,"abstract":"<p><p>Hippocampus in the mammalian brain supports navigation by building a cognitive map of the environment. However, only a few studies have investigated cognitive maps in large-scale arenas. To reveal the computational mechanisms underlying the formation of cognitive maps in large-scale environments, we propose a neural network model of the entorhinal-hippocampal neural circuit that integrates both spatial and non-spatial information. Spatial information is relayed from the grid units in medial entorhinal cortex (MEC) by integrating multimodal sensory-motor signals. Non-spatial, such as object, information is imparted from the visual units in lateral entorhinal cortex (LEC) by encoding visual scenes through a deep neural network. The synaptic weights from the grid units and the visual units to the place units in the hippocampus are learned by a competitive learning rule. We simulated the model in a large box maze. The place units in the model form irregularly-spaced multiple fields across the environment. When the strength of visual inputs is dominant, the responses of place units become conjunctive and egocentric. These results point to the key role of the hippocampus in balancing spatial and non-spatial information relayed via LEC and MEC.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"19"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of directional leads, stimulation patterns and programming strategies for deep brain stimulation.","authors":"Yijie Zhou, Yibo Song, Xizi Song, Feng He, Minpeng Xu, Dong Ming","doi":"10.1007/s11571-024-10210-0","DOIUrl":"10.1007/s11571-024-10210-0","url":null,"abstract":"<p><p>Deep brain stimulation (DBS) is a well-established treatment for both neurological and psychiatric disorders. Directional DBS has the potential to minimize stimulation-induced side effects and maximize clinical benefits. Many new directional leads, stimulation patterns and programming strategies have been developed in recent years. Therefore, it is necessary to review new progress in directional DBS. This paper summarizes progress for directional DBS from the perspective of directional DBS leads, stimulation patterns, and programming strategies which are three key elements of DBS systems. Directional DBS leads are reviewed in electrode design and volume of tissue activated visualization strategies. Stimulation patterns are reviewed in stimulation parameters and advances in stimulation patterns. Programming strategies are reviewed in computational modeling, monopolar review, direction indicators and adaptive DBS. This review will provide a comprehensive overview of primary directional DBS leads, stimulation patterns and programming strategies, making it helpful for those who are developing DBS systems.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"33"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-23DOI: 10.1007/s11571-024-10187-w
R Mathumitha, A Maryposonia
{"title":"Emotion analysis of EEG signals using proximity-conserving auto-encoder (PCAE) and ensemble techniques.","authors":"R Mathumitha, A Maryposonia","doi":"10.1007/s11571-024-10187-w","DOIUrl":"10.1007/s11571-024-10187-w","url":null,"abstract":"<p><p>Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders. Recently, several deep learning (DL) based approaches have been developed for accurate emotion recognition tasks. Yet, previous works often struggle with poor recognition accuracy, high dimensionality, and high computational time. This research work designed an innovative framework named Proximity-conserving Auto-encoder (PCAE) for accurate emotion recognition based on EEG signals and resolves challenges faced by traditional emotion analysis techniques. For preserving local structures among the EEG data and reducing dimensionality, the proposed PCAE approach is introduced and it captures the essential features related to emotional states. The EEG data are collected from the EEG Brainwave dataset using a Muse EEG headband and applying preprocessing steps to enhance signal quality. The proposed PCAE model incorporates multiple convolution and deconvolution layers for encoding and decoding and deploys a Local Proximity Preservation Layer for preserving local correlations in the latent space. In addition, it develops a Proximity-conserving Squeeze-and-Excitation Auto-encoder (PC-SEAE) model to further improve the feature extraction ability of the PCAE technique. The proposed PCAE technique utilizes Maximum Mean Discrepancy (MMD) regularization to decrease the distribution discrepancy between input data and the extracted features. Moreover, the proposed model designs an ensemble model for emotion categorization that incorporates a one-versus-support vector machine (SVM), random forest (RF), and Long Short-Term Memory (LSTM) networks by utilizing each classifier's strength to enhance classification accuracy. Further, the performance of the proposed PCAE model is evaluated using diverse performance measures and the model attains outstanding results including accuracy, precision, and Kappa coefficient of 98.87%, 98.69%, and 0.983 respectively. This experimental validation proves that the proposed PCAE framework provides a significant contribution to accurate emotion recognition and classification systems.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"32"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OrganogenesisPub Date : 2025-12-01Epub Date: 2025-02-18DOI: 10.1080/15476278.2025.2460261
Ke Xu, Mingzhe Zhang, Xiaofeng Zou, Mingyang Wang
{"title":"Tetramethylpyrazine Confers Protection Against Oxidative Stress and NLRP3-Dependent Pyroptosis in Rats with Endometriosis.","authors":"Ke Xu, Mingzhe Zhang, Xiaofeng Zou, Mingyang Wang","doi":"10.1080/15476278.2025.2460261","DOIUrl":"10.1080/15476278.2025.2460261","url":null,"abstract":"<p><p>Tetramethylpyrazine (TMP) has been confirmed to suppress inflammation in endometriosis (EMs). Herein, this study investigated whether and how TMP affected NLRP3 inflammasomes and oxidative stress in EMs. After establishment of an EMs rat model, rats were treated with different concentrations of TMP. The size of endometriotic lesions and the latency and frequency of torsion in rats were recorded, followed by the measurement of relevant indicators (TNF-α, IL-6, IL-2, IL-10, MDA, SOD, GSH, CAT, ROS, NLRP3, ASC, GSDMD, caspase-1, Nrf2, and HO-1). The study experimentally determined that TMP treatment markedly decreased the size of endometriotic lesions and improved torsion in rats with EMs. The levels of inflammatory proteins, oxidative stress markers, NLRP3 inflammasome, and pyroptotic proteins were elevated in rats with EMs, all of which were reversed upon TMP treatment. Additionally, the activities of SOD, GSH, and CAT were lowered in rats with EMs, which were partly abrogated by TMP treatment. Furthermore, the downregulation of Nrf2 and HO-1 was counteracted by TMP treatment. To sum up, TMP represses excessive oxidative stress, NLRP3 inflammasome activation, and pyroptosis in rats with EMs. Additionally, TMP may activate the Nrf2/HO-1 pathway.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"21 1","pages":"2460261"},"PeriodicalIF":1.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845083/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-02-06DOI: 10.1007/s11571-025-10225-1
Peter Beim Graben
{"title":"Pragmatic information of aesthetic appraisal.","authors":"Peter Beim Graben","doi":"10.1007/s11571-025-10225-1","DOIUrl":"10.1007/s11571-025-10225-1","url":null,"abstract":"<p><p>A phenomenological model for aesthetic appraisal is proposed in terms of pragmatic information for a dynamic update semantics over belief states of an aesthetic appreciator. The model qualitatively correlates with aesthetic pleasure ratings in an experimental study on cadential effects in Western tonal music, conducted by Cheung et al. (Curr Biol 29(23):4084-4092.e4, 2019). Finally, related computational and neurodynamical accounts are discussed.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"39"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-09DOI: 10.1007/s11571-024-10213-x
Junling Wang, Ludan Zhang, Sitong Chen, Huiqin Xue, Minghao Du, Yunuo Xu, Shuang Liu, Dong Ming
{"title":"Individuals with high autistic traits exhibit altered interhemispheric brain functional connectivity patterns.","authors":"Junling Wang, Ludan Zhang, Sitong Chen, Huiqin Xue, Minghao Du, Yunuo Xu, Shuang Liu, Dong Ming","doi":"10.1007/s11571-024-10213-x","DOIUrl":"10.1007/s11571-024-10213-x","url":null,"abstract":"<p><p>Individuals with high autistic traits (AT) encounter challenges in social interaction, similar to autistic persons. Precise screening and focused interventions positively contribute to improving this situation. Functional connectivity analyses can measure information transmission and integration between brain regions, providing neurophysiological insights into these challenges. This study aimed to investigate the patterns of brain networks in high AT individuals to offer theoretical support for screening and intervention decisions. EEG data were collected during a 4-min resting state session with eyes open and closed from 48 participants. Using the Autism Spectrum Quotient (AQ) scale, participants were categorized into the high AT group (HAT, n = 15) and low AT groups (LAT, n = 15). We computed the interhemispheric and intrahemispheric alpha coherence in two groups. The correlation between physiological indices and AQ scores was also examined. Results revealed that HAT exhibited significantly lower alpha coherence in the homologous hemispheres of the occipital cortex compared to LAT during the eyes-closed resting state. Additionally, significant negative correlations were observed between the degree of AT (AQ scores) and the alpha coherence in the occipital cortex, as well as in the right frontal and left occipital regions. The findings indicated that high AT individuals exhibit decreased connectivity in the occipital region, potentially resulting in diminished ability to process social information from visual inputs. Our discovery contributes to a deeper comprehension of the neural underpinnings of social challenges in high AT individuals, providing neurophysiological signatures for screening and intervention strategies for this population.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"9"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expected profitability, independence, and risk assessment of small farmers in the wave of GM crop collectivization--evidence from Xinjiang and Guangdong.","authors":"Yu Pang, Helin Zou, Chunchun Jia, Chao Gu","doi":"10.1080/21645698.2024.2445795","DOIUrl":"10.1080/21645698.2024.2445795","url":null,"abstract":"<p><p>As a longstanding and indispensable part of developing countries, small farmers face challenges brought by the dissemination of GM technology. Despite governments' efforts to promote collective cultivation of GM crops through top-down policies aimed at enhancing small farmers' production efficiency and market competitiveness, actual participation rates among small farmers in many developing countries remain low. This reflects a gap and mismatch between policy design and the actual needs of small farmers. Based on a survey and empirical analysis of 964 small farmers in Guangdong and Xinjiang, China, this study finds that small farmers' acceptance of GM technology is influenced not only by expected profitability but also by factors such as their independence and risk assessment of the technology. The findings reveal that, first, small farmers' expected profitability from GM technology and their perception of independent market adaptability positively influence their willingness to participate in collective GM crop farming. Independent market adaptability acts as a partial mediator in this relationship and is moderated by small farmers' risk assessments of GM technology. Variables such as gender, age, education level, and farming experience do not show significant effects. This study enriches the theoretical frameworks related to technology acceptance, innovation and diffusion, livelihood strategies, and collective transformation among small farmers in developing countries. It provides scientific evidence for policymakers to design more effective and aligned policies concerning GM crops.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"97-117"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730364/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed Abdelsattar, Ahmed M Ramadan, Amin E Eltayeb, Osama M Saleh, Fatthy M Abdel-Tawab, Eman M Fahmy, Sameh E Hassanein, Hani M Ali, Najla B S Al-Saud, Hussien F Alameldin, Sabah M Hassan, Nermin G Mohamed, Ahmed Z Abdel Azeiz, Ahmed Bahieldin, Hala F Eissa
{"title":"Development of transgenic wheat plants withstand salt stress via the <i>MDAR1</i> gene.","authors":"Mohamed Abdelsattar, Ahmed M Ramadan, Amin E Eltayeb, Osama M Saleh, Fatthy M Abdel-Tawab, Eman M Fahmy, Sameh E Hassanein, Hani M Ali, Najla B S Al-Saud, Hussien F Alameldin, Sabah M Hassan, Nermin G Mohamed, Ahmed Z Abdel Azeiz, Ahmed Bahieldin, Hala F Eissa","doi":"10.1080/21645698.2025.2463139","DOIUrl":"10.1080/21645698.2025.2463139","url":null,"abstract":"<p><p>In light of the fact that climate change has emerged as one of the difficulties confronting the global food system, researchers are obligated to work toward developing fundamental crops, particularly wheat, to combat environmental stress, including drought and salt. In the present study, genetic engineering was used to transfer the Arabidopsis <i>MDAR1</i> gene, which controls the buildup of ascorbic acid (AsA) to make bread wheat less likely to be sensitive to salt stress. The biolistic bombardment was used to transfer cDNA from the <i>Arabidopsis thaliana</i> plant that encodes <i>MDAR1</i> into Bobwhite 56 cultivar wheat plants. A molecular investigation was performed on six different transgenic lines to confirm the integration of the transgene, the copy number, and the expression of the transgene. There were one to three copies of the transgene, and there was no association found between the number of copies of the transgene and All the data generated or analyzed during this study are included in this published article [and its supplementary information files].the presence of its expression. Compared to plants that were not transgenic, the amount of ascorbic acid (AsA) that accumulated in the transgenic plants was twice as high. ROS concentrations are significantly lower in transgenic plants compared to non-transgenic plants under both control and salt stress conditions, effectively reducing oxidative stress. By cultivating transgenic T2 plants in a greenhouse, we were able to determine whether they were able to tolerate the potentially damaging effects of salt stress (200 mm). The study concluded that transgenic wheat plants that consistently expressed the <i>MDAR1</i> gene become tolerant to salt stress with improvement in growth characteristics.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"173-187"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ye-Jin Jang, Sung-Dug Oh, Joon Ki Hong, Jong-Chan Park, Seong-Kon Lee, Ancheol Chang, Doh-Won Yun, Bumkyu Lee
{"title":"Impact of genetically modified herbicide-resistant maize on rhizosphere bacterial communities.","authors":"Ye-Jin Jang, Sung-Dug Oh, Joon Ki Hong, Jong-Chan Park, Seong-Kon Lee, Ancheol Chang, Doh-Won Yun, Bumkyu Lee","doi":"10.1080/21645698.2025.2466915","DOIUrl":"10.1080/21645698.2025.2466915","url":null,"abstract":"<p><p>Rhizosphere bacterial community studies offer valuable insights into the environmental implications of genetically modified (GM) crops. This study compared the effects of a non-GM maize cultivar, namely Hi-IIA, with those of a herbicide-resistant maize cultivar containing the <i>phosphinothricin N-acetyltransferase</i> gene on the rhizosphere bacterial community across growth stages. 16s rRNA amplicon sequencing and data analysis tools revealed no significant differences in bacterial community composition or diversity between the cultivars. Principal component analysis revealed that differences in community structure were driven by plant growth stages rather than plant type. Polymerase chain reaction analysis was conducted to examine the potential horizontal transfer of the introduced gene from the GM maize to rhizosphere microorganisms; however, the introduced gene was not detected in the soil genomic DNA. Overall, the environmental impact of GM maize, particularly on soil microorganisms, is negligible, and the cultivation of GM maize does not alter significantly the rhizosphere bacterial community.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"186-198"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}