Marta Clerici, Maria Camilla Ciardulli, Erwin Pavel Lamparelli, Joseph Lovecchio, Emanuele Giordano, Tina P Dale, Nicholas R Forsyth, Nicola Maffulli, Giovanna Della Porta
{"title":"Human tendon stem/progenitor cell-derived extracellular vesicle production promoted by dynamic culture.","authors":"Marta Clerici, Maria Camilla Ciardulli, Erwin Pavel Lamparelli, Joseph Lovecchio, Emanuele Giordano, Tina P Dale, Nicholas R Forsyth, Nicola Maffulli, Giovanna Della Porta","doi":"10.1080/21691401.2025.2475099","DOIUrl":"10.1080/21691401.2025.2475099","url":null,"abstract":"<p><p>Tendon injuries significantly impact quality of life, prompting the exploration of innovative solutions beyond conventional surgery. Extracellular Vesicles (EVs) have emerged as a promising strategy to enhance tendon regeneration. In this study, human Tendon Stem/Progenitor Cells (TSPCs) were isolated from surgical biopsies and cultured in a Growth-Differentiation Factor-5-supplemented medium to promote tenogenic differentiation under static and dynamic conditions using a custom-made perfusion bioreactor. Once at 80% confluence, cells were transitioned to a serum-free medium for conditioned media collection. Ultracentrifugation revealed the presence of vesicles with a 10<sup>6</sup> particles/mL concentration and sub-200nm diameter size. Dynamic culture yielded a 3-fold increase in EV protein content compared to static culture, as confirmed by Western-blot analysis. Differences in surface marker expression were also shown by flow cytometric analysis. Data suggest that we efficiently developed a protocol for extracting EVs from human TSPCs, particularly under dynamic conditions. This approach enhances EV protein content, offering potential therapeutic benefits for tendon regeneration. However, further research is needed to fully understand the role of EVs in tendon regeneration.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"1-16"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143596200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanni Wang, Xiangxiang Peng, Bingjie Qian, Libo Wang, Jiabing Wang
{"title":"The integration of metabolites from <i>Forsythia suspensa</i> and gut microbiota ameliorates drug-induced liver injury: network pharmacology and molecular docking studies.","authors":"Yanni Wang, Xiangxiang Peng, Bingjie Qian, Libo Wang, Jiabing Wang","doi":"10.1080/21691401.2025.2475088","DOIUrl":"10.1080/21691401.2025.2475088","url":null,"abstract":"<p><p>This study integrates metabolites from Forsythia suspensa (FS) and gut microbiota GM to assess combined therapeutic efficacy against drug-induced liver injury (DILI) using network pharmacology and molecular docking. Metabolites of FS and GM were retrieved from the NPASS and gutMGene databases, respectively. Relevant targets for metabolites and DILI-related targets were identified through public databases. The PPI network and KEGG pathway analysis were employed to identify hub targets and key signalling pathways. Furthermore, we performed a molecular docking assay on the active metabolites and targets to verify the network pharmacological concept. The physicochemical properties and toxicity of identified key metabolites were assessed using in silico platforms. 19 final targets were recognized as key proteins responsible for the alleviation of DILI by FS and GM metabolites, with ESR1 emerging as a central target in the PPI network. The estrogen signalling pathway, particularly involving ESR1, ESR2 and JUN genes, was identified as a key mediator in the therapeutic effects. Four GM metabolites (baicalein, luteolin, lunularin and 2,3-bis(3,4-dihydroxybenzyl)butyrolactone) and two FS metabolites (pinoresinol and isolariciresinol) were identified as non-toxic, promising candidates. In conclusion, metabolites from FS and GM may exert a potent synergistic effect on DILI through modulation of the estrogen signalling pathway.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"105-121"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiannan Wang, Xinyue Mao, Yulan Li, Gang Mo, Dayu Li, Deping Cao, Gen Chen
{"title":"The mechanistic action of mogroside V in the alleviation of oxidative aging.","authors":"Qiannan Wang, Xinyue Mao, Yulan Li, Gang Mo, Dayu Li, Deping Cao, Gen Chen","doi":"10.1080/21691401.2025.2486752","DOIUrl":"https://doi.org/10.1080/21691401.2025.2486752","url":null,"abstract":"<p><strong>Introduce: </strong>Diseases related to oxidative ageing are becoming increasingly evident in younger individuals. In this study, we investigated the mechanisms underlying the actions of mogroside V when used to treat anti-oxidative ageing.</p><p><strong>Methods: </strong>We used D-galactose-induced LO2 cells and C57BL/6J mice as models to investigate the molecular mechanisms of mogroside V (MV) for the treatment of oxidative ageing. Network pharmacology was used to predict the targets of MV for the treatment of oxidative ageing.</p><p><strong>Results: </strong>By down-regulating the <i>EGFR</i>/<i>p38</i>/<i>JNK</i> pathway, MV significantly inhibited oxidative ageing and apoptosis in cells, reduced the levels of SA-β-galactosidase. In mice, compared with the model group, MV treatment (100 mg/kg·d) reduced MDA levels and significantly increased the levels of GSH and SOD; furthermore, the size and structure of the liver leaflet and glomeruli was arranged in a regular manner; the small intestine glands had decreased in size. Moreover, the expression levels of <i>Ptp1b</i> mRNA had increased significantly while the levels of <i>c-Jun</i> mRNA and protein were significantly reduced. MV also increased the proportion of beneficial bacteria in the small intestine, including <i>Bacteroidales</i> and <i>Lactobacillaceae</i>.</p><p><strong>Conclusion: </strong>Our analyses revealed that MV can significantly reduce oxidative ageing caused by the accumulation of D-galactose.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"166-180"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143973042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinyue Wang, Jingwen Li, Yuxue Zhou, Jinhao Zhang, Le Wang, Yajing Liu, Xuguang Yang, Hongshuang Han, Qingyu Wang, Ying Wang
{"title":"Functional analysis of type II chalcone isomerase (<i>CHI</i>) genes in regulating soybean (<i>Glycine max L</i>.) nodule formation.","authors":"Xinyue Wang, Jingwen Li, Yuxue Zhou, Jinhao Zhang, Le Wang, Yajing Liu, Xuguang Yang, Hongshuang Han, Qingyu Wang, Ying Wang","doi":"10.1080/21645698.2025.2486280","DOIUrl":"10.1080/21645698.2025.2486280","url":null,"abstract":"<p><p>Biological nitrogen fixation (BNF) is the most cost-effective and environmentally benign method for nitrogen fertilization. Isoflavones are important signaling factors for BNF in leguminous plants. Whether chalcone isomerase (<i>CHI</i>), the key enzyme gene in the flavonoid synthesis pathway, contributes to soybean (<i>Glycine max</i>) nodulation has not yet been fully clarified. In the present study, we identified the functions of three types of <i>GmCHI</i> for BNF using a hairy root system. The results showed that <i>GmCHI1A</i> and <i>GmCHI1B1</i> positively increased nodulation while <i>GmCHI1B2</i> did not, with the <i>GmCHI1A</i> gene having a greater effect than <i>GmCHI1B1</i>. Meanwhile, the daidzein and genistein contents were significantly increased in composite plants overexpressing <i>GmCHI1A</i> and reduced in composite plants, thus interfering with <i>GmCHI1A</i>. However, overexpression of <i>GmCHI1B1</i> significantly increased the content of glycitein but not daidzein, genistein content implied that homologous genes exhibit functional differentiation. These results provide a reference for subsequent studies on improving nitrogen fixation in soybeans and providing functional genes for the improvement of new varieties.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"305-317"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-06-05DOI: 10.1007/s11571-025-10266-6
Kubra Yildirim, Tugce Keles, Sengul Dogan, Turker Tuncer, Irem Tasci, Abdul Hafeez-Baig, Prabal Datta Barua, U R Acharya
{"title":"DMPat-based SOXFE: investigations of the violence detection using EEG signals.","authors":"Kubra Yildirim, Tugce Keles, Sengul Dogan, Turker Tuncer, Irem Tasci, Abdul Hafeez-Baig, Prabal Datta Barua, U R Acharya","doi":"10.1007/s11571-025-10266-6","DOIUrl":"10.1007/s11571-025-10266-6","url":null,"abstract":"<p><p>Automatic violence detection is one of the most important research areas at the intersection of machine learning and information security. Moreover, we aimed to investigate violence detection in the context of neuroscience. Therefore, we have collected a new electroencephalography (EEG) violence detection dataset and presented a self-organized explainable feature engineering (SOXFE) approach. In the first phase of this research, we collected a new EEG violence dataset. This dataset contains two classes: (i) resting, (ii) violence. To detect violence automatically, we proposed a new SOXFE approach, which contains five main phases: (1) feature extraction with the proposed distance matrix pattern (DMPat), which generates three feature vectors, (2) feature selection with iterative neighborhood component analysis (INCA), and three selected feature vectors were created, (3) explainable results generation using Directed Lobish (DLob) and statistical analysis of the generated DLob string, (4) classification deploying t algorithm-based k-nearest neighbors (tkNN), and (5) information fusion employing mode operator and selecting the best outcome via greedy algorithm. By deploying the proposed model, classification and explainable results were generated. To obtain the classification results, tenfold cross-validation (CV), leave-one-record-out (LORO) CV were utilized, and the presented model attained 100% classification accuracy with tenfold CV and reached 98.49% classification accuracy with LORO CV. Moreover, we demonstrated the cortical connectome map related to violence. These results and findings clearly indicated that the proposed model is a good violence detection model. Moreover, this model contributes to feature engineering, neuroscience and social security.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"86"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144246796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2024-12-31DOI: 10.1007/s11571-024-10205-x
Bingxin Lin, Baoshun Guo, Lingyun Zhuang, Dan Zhang, Fei Wang
{"title":"Neural oscillations predict flow experience.","authors":"Bingxin Lin, Baoshun Guo, Lingyun Zhuang, Dan Zhang, Fei Wang","doi":"10.1007/s11571-024-10205-x","DOIUrl":"10.1007/s11571-024-10205-x","url":null,"abstract":"<p><p>Flow experience, characterized by immersion in the activity at hand, provides a motivational boost and promotes positive behaviors. However, the oscillatory representations of flow experience are still poorly understood. In this study, the difficulty of the video game was adjusted to manipulate the individual's personalized flow or non-flow state, and EEG data was recorded throughout. Our results show that, compared to non-flow tasks, flow tasks exhibit higher theta power, moderate alpha power, and lower beta power, providing evidence for a focused yet effortless brain pattern during flow. Additionally, we employed Lasso regression to predict individual subjective flow scores based on neural data, achieving a correlation coefficient of 0.571 (<i>p</i> < 0.01) between the EEG-predicted scores and the actual self-reported scores. Our findings offer new insights into the oscillatory representation of flow and emphasize that flow, as a measure of individual experience quality, can be objectively and quantitatively predicted through neural oscillations.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"1"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-06DOI: 10.1007/s11571-024-10206-w
Shuang Wang, Bo Li, Minghe Xu, Chunlian Chen, Zhe Liu, Yuqing Ji, Shaowen Qian, Kai Liu, Gang Sun
{"title":"Aberrant regional neural fluctuations and functional connectivity in insomnia comorbid depression revealed by resting-state functional magnetic resonance imaging.","authors":"Shuang Wang, Bo Li, Minghe Xu, Chunlian Chen, Zhe Liu, Yuqing Ji, Shaowen Qian, Kai Liu, Gang Sun","doi":"10.1007/s11571-024-10206-w","DOIUrl":"10.1007/s11571-024-10206-w","url":null,"abstract":"<p><p>Insomnia is a common mental illness seriously affecting people lives, that might progress to major depression. However, the neural mechanism of patients with CID comorbid MDD remain unclear. Combining fractional amplitude of low-frequency fluctuation (fALFF) and seed-based functional connectivity (FC), this study investigated abnormality in local and long-range neural activity of patients with CID comorbid MDD. Here, we acquired resting-state blood oxygenation level dependent (BOLD) data from 57 patients with CID comorbid MDD and 57 healthy controls (HC). Compared with the controls, patients with CID comorbid MDD exhibited abnormal functional activity in posterior cerebral cortex related to the visual cortex, including the middle occipital gyrus (MOG), the cuneus and the lingual gyrus, specifically, lower fALFF values in the right MOG, left cuneus, and right postcentral gyrus, increased FC between the right MOG and the left cerebellum, and decreased FC between the right MOG and the right lingual gyrus. Neuropsychological correlation analysis revealed that the decreased fALFF in the right MOG was negatively correlated with all the neuropsychological scores of insomnia and depression, reflecting common relationships with symptoms of CID and MDD. While the decreased fALFF of the left cuneus was distinctly correlated with the scores of depression related scales. The decreased FC between the right MOG and the right lingual gyrus was distinctly correlated with the scores of insomnia related scales. This study not only widened neuroimaging evidence that associated with insomnia and depressive symptoms of patients with CID comorbid MDD, but also provided new potential targets for clinical treatment.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"8"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-06DOI: 10.1007/s11571-024-10191-0
Ming Ke, Xinyi Yao, Peihui Cao, Guangyao Liu
{"title":"Reconstruction and application of multilayer brain network for juvenile myoclonic epilepsy based on link prediction.","authors":"Ming Ke, Xinyi Yao, Peihui Cao, Guangyao Liu","doi":"10.1007/s11571-024-10191-0","DOIUrl":"10.1007/s11571-024-10191-0","url":null,"abstract":"<p><p>Juvenile myoclonic epilepsy (JME) exhibits abnormal functional connectivity of brain networks at multiple frequencies. We used the multilayer network model to address the heterogeneous features at different frequencies and assess the mechanisms of functional integration and segregation of brain networks in JME patients. To address the possibility of false edges or missing edges during network construction, we combined multilayer networks with link prediction techniques. Resting-state functional magnetic resonance imaging (rs-fMRI) data were procured from 40 JME patients and 40 healthy controls. The Multilayer Network framework is utilized to integrate information from different frequency bands and to fuse similarity metrics for link prediction. Finally, calculate the entropy of the multiplex degree and multilayer clustering coefficient of the reconfigured multilayer frequency network. The results showed that the multilayer brain network of JME patients had significantly reduced ability to integrate and separate information and significantly correlated with severity of JME symptoms. This difference was particularly evident in default mode network (DMN), motor and somatosensory network (SMN), and auditory network (AN). In addition, significant differences were found in the precuneus, suboccipital gyrus, middle temporal gyrus, thalamus, and insula. Results suggest that JME patients have abnormal brain function and reduced cross-frequency interactions. This may be due to changes in the distribution of connections within and between the DMN, SMN, and AN in multiple frequency bands, resulting in unstable connectivity patterns. The generation of these changes is related to the pathological mechanisms of JME and may exacerbate cognitive and behavioral problems in patients.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-024-10191-0.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"7"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703786/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-23DOI: 10.1007/s11571-024-10208-8
Chun-Wang Su, Fan Yang, Runchen Lai, Yanhai Li, Hadia Naeem, Nan Yao, Si-Ping Zhang, Haiqing Zhang, Youjun Li, Zi-Gang Huang
{"title":"Unraveling the functional complexity of the locus coeruleus-norepinephrine system: insights from molecular anatomy to neurodynamic modeling.","authors":"Chun-Wang Su, Fan Yang, Runchen Lai, Yanhai Li, Hadia Naeem, Nan Yao, Si-Ping Zhang, Haiqing Zhang, Youjun Li, Zi-Gang Huang","doi":"10.1007/s11571-024-10208-8","DOIUrl":"10.1007/s11571-024-10208-8","url":null,"abstract":"<p><p>The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory. Furthermore, we explore the system's involvement in stress responses and pain modulation, as well as its developmental changes and susceptibility to stressors. By integrating molecular, electrophysiological, and theoretical modeling approaches, we shed light on the LC-NE system's complex role in the brain's adaptability and its potential relevance to neurological and psychiatric disorders.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"29"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-02-04DOI: 10.1007/s11571-024-10209-7
Jing Zhang, Hui Tang, Lijun Zuo, Hao Liu, Zixiao Li, Jing Jing, Yongjun Wang, Tao Liu
{"title":"Altered effective connectivity within brain lesioned regions and cognitive impairment after stroke.","authors":"Jing Zhang, Hui Tang, Lijun Zuo, Hao Liu, Zixiao Li, Jing Jing, Yongjun Wang, Tao Liu","doi":"10.1007/s11571-024-10209-7","DOIUrl":"10.1007/s11571-024-10209-7","url":null,"abstract":"<p><p>Poststroke cognitive impairments (PSCI) reflect widespread network dysfunction due to structural damage, abnormal neural activity, or abnormal connections in affected brain regions. The exact influence of these lesioned regions on the related functional network and their role in PSCI remains unclear. We recruited 35 first-time stroke patients who had basal ganglia infarcts and PSCI, along with 29 age-matched healthy controls. We utilized T1-weighted imaging to inspect structural damage with regional gray matter volume (GMV). Resting-state fMRI data were utilized to examine spontaneous activities with regional Wavelet-ALFF metric, investigate dynamic functional connectivity (dFC) by seeding the region with damaged GMV, and further study effective connectivity within the abnormal dFC network and its impact on PSCI. In comparison to HC, patients showed significant reduced GMV in the bilateral Rolandic operculum (ROL), along with notable abnormal Wavelet-ALFF values in the right Precuneus (PCUN) and left Cerebellum_9 (CER9). Particularly, an abnormal dFC network seeded in the left ROL, demonstrating significantly differential between PSCI and HC groups and remaining consistent across all time windows, was observed. This abnormal dFC network comprised the left ROL as the seed region, the right ROL, bilateral PCUN, bilateral CER9, right Superior Temporal Gyrus (STG), and right Parahippocampal Gyrus (PHG). Notably, in patients, impaired functions across various cognitive domains significantly influenced the altered effective connections among the abnormal regions, particularly impacting the connections between structurally damaged regions and those with abnormal spontaneous activity. These findings suggest that altered effective connectivity networks within lesioned regions may contribute to deficits in various cognitive domains in PSCI.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-024-10209-7.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"36"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}