Weixiong Jiang, Lin Li, Yulong Xia, Sajid Farooq, Gang Li, Shuaiqi Li, Jinhua Xu, Sailing He, Xiangyu Wu, Shoujun Huang, Jing Yuan, Dexing Kong
{"title":"Neural dynamics of deception: insights from fMRI studies of brain states.","authors":"Weixiong Jiang, Lin Li, Yulong Xia, Sajid Farooq, Gang Li, Shuaiqi Li, Jinhua Xu, Sailing He, Xiangyu Wu, Shoujun Huang, Jing Yuan, Dexing Kong","doi":"10.1007/s11571-025-10222-4","DOIUrl":null,"url":null,"abstract":"<p><p>Deception is a complex behavior that requires greater cognitive effort than truth-telling, with brain states dynamically adapting to external stimuli and cognitive demands. Investigating these brain states provides valuable insights into the brain's temporal and spatial dynamics. In this study, we designed an experiment paradigm to efficiently simulate lying and constructed a temporal network of brain states. We applied the Louvain community clustering algorithm to identify characteristic brain states associated with lie-telling, inverse-telling, and truth-telling. Our analysis revealed six representative brain states with unique spatial characteristics. Notably, two distinct states-termed <i>truth-preferred</i> and <i>lie-preferred</i>-exhibited significant differences in fractional occupancy and average dwelling time. The truth-preferred state showed higher occupancy and dwelling time during truth-telling, while the lie-preferred state demonstrated these characteristics during lie-telling. Using the average z-score BOLD signals of these two states, we applied generalized linear models with elastic net regularization, achieving a classification accuracy of 88.46%, with a sensitivity of 92.31% and a specificity of 84.62% in distinguishing deception from truth-telling. These findings revealed representative brain states for lie-telling, inverse-telling, and truth-telling, highlighting two states specifically associated with truthful and deceptive behaviors. The spatial characteristics and dynamic attributes of these brain states indicate their potential as biomarkers of cognitive engagement in deception.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-025-10222-4.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"42"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842687/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10222-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Deception is a complex behavior that requires greater cognitive effort than truth-telling, with brain states dynamically adapting to external stimuli and cognitive demands. Investigating these brain states provides valuable insights into the brain's temporal and spatial dynamics. In this study, we designed an experiment paradigm to efficiently simulate lying and constructed a temporal network of brain states. We applied the Louvain community clustering algorithm to identify characteristic brain states associated with lie-telling, inverse-telling, and truth-telling. Our analysis revealed six representative brain states with unique spatial characteristics. Notably, two distinct states-termed truth-preferred and lie-preferred-exhibited significant differences in fractional occupancy and average dwelling time. The truth-preferred state showed higher occupancy and dwelling time during truth-telling, while the lie-preferred state demonstrated these characteristics during lie-telling. Using the average z-score BOLD signals of these two states, we applied generalized linear models with elastic net regularization, achieving a classification accuracy of 88.46%, with a sensitivity of 92.31% and a specificity of 84.62% in distinguishing deception from truth-telling. These findings revealed representative brain states for lie-telling, inverse-telling, and truth-telling, highlighting two states specifically associated with truthful and deceptive behaviors. The spatial characteristics and dynamic attributes of these brain states indicate their potential as biomarkers of cognitive engagement in deception.
Supplementary information: The online version contains supplementary material available at 10.1007/s11571-025-10222-4.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.