Ilknur Sercek, Niranjana Sampathila, Irem Tasci, Tuba Ekmekyapar, Burak Tasci, Prabal Datta Barua, Mehmet Baygin, Sengul Dogan, Turker Tuncer, Ru-San Tan, U R Acharya
{"title":"一种新的基于Goldner-Harary图的量子启发模式,用于阿尔茨海默病的自动检测。","authors":"Ilknur Sercek, Niranjana Sampathila, Irem Tasci, Tuba Ekmekyapar, Burak Tasci, Prabal Datta Barua, Mehmet Baygin, Sengul Dogan, Turker Tuncer, Ru-San Tan, U R Acharya","doi":"10.1007/s11571-025-10249-7","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a common cause of dementia. We aimed to develop a computationally efficient yet accurate feature engineering model for AD detection based on electroencephalography (EEG) signal inputs. New method: We retrospectively analyzed the EEG records of 134 AD and 113 non-AD patients. To generate multilevel features, a multilevel discrete wavelet transform was used to decompose the input EEG-signals. We devised a novel quantum-inspired EEG-signal feature extraction function based on 7-distinct different subgraphs of the Goldner-Harary pattern (GHPat), and selectively assigned a specific subgraph, using a forward-forward distance-based fitness function, to each input EEG signal block for textural feature extraction. We extracted statistical features using standard statistical moments, which we then merged with the extracted textural features. Other model components were iterative neighborhood component analysis feature selection, standard shallow k-nearest neighbors, as well as iterative majority voting and greedy algorithm to generate additional voted prediction vectors and select the best overall model results. With leave-one-subject-out cross-validation (LOSO CV), our model attained 88.17% accuracy. Accuracy results stratified by channel lead placement and brain regions suggested P4 and the parietal region to be the most impactful. Comparison with existing methods: The proposed model outperforms existing methods by achieving higher accuracy with a computationally efficient quantum-inspired approach, ensuring robustness and generalizability. Cortex maps were generated that allowed visual correlation of channel-wise results with various brain regions, enhancing model explainability.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"71"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065701/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new quantum-inspired pattern based on Goldner-Harary graph for automated alzheimer's disease detection.\",\"authors\":\"Ilknur Sercek, Niranjana Sampathila, Irem Tasci, Tuba Ekmekyapar, Burak Tasci, Prabal Datta Barua, Mehmet Baygin, Sengul Dogan, Turker Tuncer, Ru-San Tan, U R Acharya\",\"doi\":\"10.1007/s11571-025-10249-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a common cause of dementia. We aimed to develop a computationally efficient yet accurate feature engineering model for AD detection based on electroencephalography (EEG) signal inputs. New method: We retrospectively analyzed the EEG records of 134 AD and 113 non-AD patients. To generate multilevel features, a multilevel discrete wavelet transform was used to decompose the input EEG-signals. We devised a novel quantum-inspired EEG-signal feature extraction function based on 7-distinct different subgraphs of the Goldner-Harary pattern (GHPat), and selectively assigned a specific subgraph, using a forward-forward distance-based fitness function, to each input EEG signal block for textural feature extraction. We extracted statistical features using standard statistical moments, which we then merged with the extracted textural features. Other model components were iterative neighborhood component analysis feature selection, standard shallow k-nearest neighbors, as well as iterative majority voting and greedy algorithm to generate additional voted prediction vectors and select the best overall model results. With leave-one-subject-out cross-validation (LOSO CV), our model attained 88.17% accuracy. Accuracy results stratified by channel lead placement and brain regions suggested P4 and the parietal region to be the most impactful. Comparison with existing methods: The proposed model outperforms existing methods by achieving higher accuracy with a computationally efficient quantum-inspired approach, ensuring robustness and generalizability. Cortex maps were generated that allowed visual correlation of channel-wise results with various brain regions, enhancing model explainability.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"71\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065701/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10249-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10249-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A new quantum-inspired pattern based on Goldner-Harary graph for automated alzheimer's disease detection.
Alzheimer's disease (AD) is a common cause of dementia. We aimed to develop a computationally efficient yet accurate feature engineering model for AD detection based on electroencephalography (EEG) signal inputs. New method: We retrospectively analyzed the EEG records of 134 AD and 113 non-AD patients. To generate multilevel features, a multilevel discrete wavelet transform was used to decompose the input EEG-signals. We devised a novel quantum-inspired EEG-signal feature extraction function based on 7-distinct different subgraphs of the Goldner-Harary pattern (GHPat), and selectively assigned a specific subgraph, using a forward-forward distance-based fitness function, to each input EEG signal block for textural feature extraction. We extracted statistical features using standard statistical moments, which we then merged with the extracted textural features. Other model components were iterative neighborhood component analysis feature selection, standard shallow k-nearest neighbors, as well as iterative majority voting and greedy algorithm to generate additional voted prediction vectors and select the best overall model results. With leave-one-subject-out cross-validation (LOSO CV), our model attained 88.17% accuracy. Accuracy results stratified by channel lead placement and brain regions suggested P4 and the parietal region to be the most impactful. Comparison with existing methods: The proposed model outperforms existing methods by achieving higher accuracy with a computationally efficient quantum-inspired approach, ensuring robustness and generalizability. Cortex maps were generated that allowed visual correlation of channel-wise results with various brain regions, enhancing model explainability.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.