MicroRNA-214-3p Delivered by Bone Marrow Mesenchymal Stem Cells-Secreted Exosomes Affects Oxidative Stress in Alzheimer's Disease Rats by Targeting CD151.

IF 2.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Organogenesis Pub Date : 2025-12-01 Epub Date: 2025-04-27 DOI:10.1080/15476278.2025.2489673
Luzy Zhang
{"title":"MicroRNA-214-3p Delivered by Bone Marrow Mesenchymal Stem Cells-Secreted Exosomes Affects Oxidative Stress in Alzheimer's Disease Rats by Targeting CD151.","authors":"Luzy Zhang","doi":"10.1080/15476278.2025.2489673","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study probed the effect of targeted regulation of CD151 by microRNA-214-3p (miR-214-3p) delivered by bone marrow mesenchymal stem cells-secreted exosomes (BMSCs-exo) on oxidative stress and apoptosis of neurons in Alzheimer's disease (AD).</p><p><strong>Methods: </strong>Rat BMSCs were isolated, from which MSCs-exo were extracted and identified. The AD rat model was established and injected with MSC-exo suspension. Meanwhile, miR-214-3p and CD151 interfering lentivirus were transfected in MSCs. After injection, learning and cognitive ability of the rats were assessed, as well as neuronal apoptosis and oxidative stress injury. miR-214-3p and CD151 levels were determined, and their relationship was explored.</p><p><strong>Results: </strong>AD rats had prolonged escape latency, weakened learning and cognitive ability, increased neuronal apoptosis in the hippocampal CA3 region, and aggravated oxidative stress. After MSC-exo injection, these changes in AD rats were partially rescued. CD151 was targeted by miR-214-3p, and MSC-exo improved AD in rats through the miR-214-3p/CD151 axis.</p><p><strong>Conclusion: </strong>MSC-exo down-regulates CD151 by targeting miR-214-3p to enhance antioxidant capacity, thereby improving the pathological injury of AD rats.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"21 1","pages":"2489673"},"PeriodicalIF":2.8000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036478/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organogenesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15476278.2025.2489673","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study probed the effect of targeted regulation of CD151 by microRNA-214-3p (miR-214-3p) delivered by bone marrow mesenchymal stem cells-secreted exosomes (BMSCs-exo) on oxidative stress and apoptosis of neurons in Alzheimer's disease (AD).

Methods: Rat BMSCs were isolated, from which MSCs-exo were extracted and identified. The AD rat model was established and injected with MSC-exo suspension. Meanwhile, miR-214-3p and CD151 interfering lentivirus were transfected in MSCs. After injection, learning and cognitive ability of the rats were assessed, as well as neuronal apoptosis and oxidative stress injury. miR-214-3p and CD151 levels were determined, and their relationship was explored.

Results: AD rats had prolonged escape latency, weakened learning and cognitive ability, increased neuronal apoptosis in the hippocampal CA3 region, and aggravated oxidative stress. After MSC-exo injection, these changes in AD rats were partially rescued. CD151 was targeted by miR-214-3p, and MSC-exo improved AD in rats through the miR-214-3p/CD151 axis.

Conclusion: MSC-exo down-regulates CD151 by targeting miR-214-3p to enhance antioxidant capacity, thereby improving the pathological injury of AD rats.

骨髓间充质干细胞分泌外泌体递送的MicroRNA-214-3p通过靶向CD151影响阿尔茨海默病大鼠的氧化应激
目的:探讨骨髓间充质干细胞分泌外泌体(BMSCs-exo)递送的microRNA-214-3p (miR-214-3p)靶向调控CD151对阿尔茨海默病(AD)神经元氧化应激和凋亡的影响。方法:分离大鼠骨髓间充质干细胞,提取并鉴定骨髓间充质干细胞外显子。建立AD大鼠模型,注射MSC-exo混悬液。同时转染miR-214-3p和CD151干扰慢病毒。注射后观察大鼠的学习和认知能力,以及神经元凋亡和氧化应激损伤。检测miR-214-3p和CD151水平,并探讨它们之间的关系。结果:AD大鼠逃避潜伏期延长,学习认知能力减弱,海马CA3区神经元凋亡增加,氧化应激加重。注射MSC-exo后,AD大鼠的这些变化部分恢复。CD151被miR-214-3p靶向,MSC-exo通过miR-214-3p/CD151轴改善大鼠AD。结论:MSC-exo通过靶向miR-214-3p下调CD151,增强抗氧化能力,从而改善AD大鼠的病理损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organogenesis
Organogenesis BIOCHEMISTRY & MOLECULAR BIOLOGY-DEVELOPMENTAL BIOLOGY
CiteScore
4.10
自引率
4.30%
发文量
6
审稿时长
>12 weeks
期刊介绍: Organogenesis is a peer-reviewed journal, available in print and online, that publishes significant advances on all aspects of organ development. The journal covers organogenesis in all multi-cellular organisms and also includes research into tissue engineering, artificial organs and organ substitutes. The overriding criteria for publication in Organogenesis are originality, scientific merit and general interest. The audience of the journal consists primarily of researchers and advanced students of anatomy, developmental biology and tissue engineering. The emphasis of the journal is on experimental papers (full-length and brief communications), but it will also publish reviews, hypotheses and commentaries. The Editors encourage the submission of addenda, which are essentially auto-commentaries on significant research recently published elsewhere with additional insights, new interpretations or speculations on a relevant topic. If you have interesting data or an original hypothesis about organ development or artificial organs, please send a pre-submission inquiry to the Editor-in-Chief. You will normally receive a reply within days. All manuscripts will be subjected to peer review, and accepted manuscripts will be posted to the electronic site of the journal immediately and will appear in print at the earliest opportunity thereafter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信