从子网角度区分阿尔茨海默病阶段的堆叠分类器。

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-02-05 DOI:10.1007/s11571-025-10221-5
Gaoxuan Li, Bo Chen, Weigang Sun, Zhenbing Liu
{"title":"从子网角度区分阿尔茨海默病阶段的堆叠分类器。","authors":"Gaoxuan Li, Bo Chen, Weigang Sun, Zhenbing Liu","doi":"10.1007/s11571-025-10221-5","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately distinguishing stages of Alzheimer's disease (AD) is crucial for diagnosis and treatment. In this paper, we introduce a stacking classifier method that combines six single classifiers into a stacking classifier. Using brain network models and network metrics, we employ <i>t</i>-tests to identify abnormal brain regions, from which we construct a subnetwork and extract its features to form the training dataset. Our method is then applied to the ADNI (Alzheimer's Disease Neuroimaging Initiative) datasets, categorizing the stages into four categories: Alzheimer's disease, mild cognitive impairment (MCI), mixed Alzheimer's mild cognitive impairment (ADMCI), and healthy controls (HCs). We investigate four classification groups: AD-HCs, AD-MCI, HCs-ADMCI, and HCs-MCI. Finally, we compare the classification accuracy between a single classifier and our stacking classifier, demonstrating superior accuracy with our stacking classifier from a subnetwork-based viewpoint.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"38"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799466/pdf/","citationCount":"0","resultStr":"{\"title\":\"A stacking classifier for distinguishing stages of Alzheimer's disease from a subnetwork perspective.\",\"authors\":\"Gaoxuan Li, Bo Chen, Weigang Sun, Zhenbing Liu\",\"doi\":\"10.1007/s11571-025-10221-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurately distinguishing stages of Alzheimer's disease (AD) is crucial for diagnosis and treatment. In this paper, we introduce a stacking classifier method that combines six single classifiers into a stacking classifier. Using brain network models and network metrics, we employ <i>t</i>-tests to identify abnormal brain regions, from which we construct a subnetwork and extract its features to form the training dataset. Our method is then applied to the ADNI (Alzheimer's Disease Neuroimaging Initiative) datasets, categorizing the stages into four categories: Alzheimer's disease, mild cognitive impairment (MCI), mixed Alzheimer's mild cognitive impairment (ADMCI), and healthy controls (HCs). We investigate four classification groups: AD-HCs, AD-MCI, HCs-ADMCI, and HCs-MCI. Finally, we compare the classification accuracy between a single classifier and our stacking classifier, demonstrating superior accuracy with our stacking classifier from a subnetwork-based viewpoint.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"38\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799466/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10221-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10221-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

准确区分阿尔茨海默病(AD)的分期对诊断和治疗至关重要。本文介绍了一种将6个单一分类器组合成一个堆叠分类器的方法。利用大脑网络模型和网络指标,我们采用t检验来识别异常的大脑区域,并从中构建子网络并提取其特征以形成训练数据集。然后将我们的方法应用于ADNI(阿尔茨海默病神经影像学倡议)数据集,将这些阶段分为四类:阿尔茨海默病、轻度认知障碍(MCI)、混合性阿尔茨海默病轻度认知障碍(ADMCI)和健康对照(hc)。我们研究了四个分类组:ad - hcc、AD-MCI、hcc - admci和hcc - mci。最后,我们比较了单个分类器和我们的堆叠分类器之间的分类精度,从基于子网络的角度证明了我们的堆叠分类器具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stacking classifier for distinguishing stages of Alzheimer's disease from a subnetwork perspective.

Accurately distinguishing stages of Alzheimer's disease (AD) is crucial for diagnosis and treatment. In this paper, we introduce a stacking classifier method that combines six single classifiers into a stacking classifier. Using brain network models and network metrics, we employ t-tests to identify abnormal brain regions, from which we construct a subnetwork and extract its features to form the training dataset. Our method is then applied to the ADNI (Alzheimer's Disease Neuroimaging Initiative) datasets, categorizing the stages into four categories: Alzheimer's disease, mild cognitive impairment (MCI), mixed Alzheimer's mild cognitive impairment (ADMCI), and healthy controls (HCs). We investigate four classification groups: AD-HCs, AD-MCI, HCs-ADMCI, and HCs-MCI. Finally, we compare the classification accuracy between a single classifier and our stacking classifier, demonstrating superior accuracy with our stacking classifier from a subnetwork-based viewpoint.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信