{"title":"通过网络药理学研究丹参成分和肠道微生物代谢物在减轻焦热介导的肝缺血再灌注损伤中的综合作用及其可能的分子机制。","authors":"Rujia Wang, Danhong Yang, Yi Chen, Jiabing Wang","doi":"10.1080/21691401.2025.2547646","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, therapeutic options for hepatic ischemia-reperfusion injury (HIRI) remain limited and challenging. An emerging alternative involves the combination of ingredients from traditional Chinese medicine (TCM) and beneficial gut microbiota (GM) metabolites. This study integrates ingredients of <i>Salvia miltiorrhiza</i> (SM) and metabolites of GM to assess their combined therapeutic efficacy against HIRI through pyroptosis using network pharmacology. Twenty-nine final targets were recognized as key proteins responsible for the alleviation of HIRI by SM ingredients and GM metabolites through pyroptosis, with GAPDH, AKT1, ILB1 emerging as central targets in the protein-protein interaction (PPI) network. The Toll-like receptor (TLR), NOD-like receptor (NLR), IL-17, TNF and MAPK signalling pathways were identified as key pathways in the therapeutic effects of SM ingredients and GM metabolites. Eight microRNAs (miRNAs) were predicted to be potential miRNAs exerting the most influence. Four SM ingredients and 11 GM metabolites were identified as non-toxic, promising candidates against HIRI. Moreover, the results of molecular docking showed all compounds were well combined with the corresponding proteins. This study highlights the therapeutic potential of TCM and beneficial GM in HIRI treatment and provides a foundational dataset for future research on their combined application. Further <i>in vitro</i> and <i>in vivo</i> studies are needed to validate these findings.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"420-435"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the integrative role and possible molecular mechanisms of <i>Salvia miltiorrhiza</i> ingredients and gut microbiota-derived metabolites in alleviating pyroptosis-mediated hepatic ischemia-reperfusion injury through network pharmacology.\",\"authors\":\"Rujia Wang, Danhong Yang, Yi Chen, Jiabing Wang\",\"doi\":\"10.1080/21691401.2025.2547646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, therapeutic options for hepatic ischemia-reperfusion injury (HIRI) remain limited and challenging. An emerging alternative involves the combination of ingredients from traditional Chinese medicine (TCM) and beneficial gut microbiota (GM) metabolites. This study integrates ingredients of <i>Salvia miltiorrhiza</i> (SM) and metabolites of GM to assess their combined therapeutic efficacy against HIRI through pyroptosis using network pharmacology. Twenty-nine final targets were recognized as key proteins responsible for the alleviation of HIRI by SM ingredients and GM metabolites through pyroptosis, with GAPDH, AKT1, ILB1 emerging as central targets in the protein-protein interaction (PPI) network. The Toll-like receptor (TLR), NOD-like receptor (NLR), IL-17, TNF and MAPK signalling pathways were identified as key pathways in the therapeutic effects of SM ingredients and GM metabolites. Eight microRNAs (miRNAs) were predicted to be potential miRNAs exerting the most influence. Four SM ingredients and 11 GM metabolites were identified as non-toxic, promising candidates against HIRI. Moreover, the results of molecular docking showed all compounds were well combined with the corresponding proteins. This study highlights the therapeutic potential of TCM and beneficial GM in HIRI treatment and provides a foundational dataset for future research on their combined application. Further <i>in vitro</i> and <i>in vivo</i> studies are needed to validate these findings.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"53 1\",\"pages\":\"420-435\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2025.2547646\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2547646","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Elucidating the integrative role and possible molecular mechanisms of Salvia miltiorrhiza ingredients and gut microbiota-derived metabolites in alleviating pyroptosis-mediated hepatic ischemia-reperfusion injury through network pharmacology.
Currently, therapeutic options for hepatic ischemia-reperfusion injury (HIRI) remain limited and challenging. An emerging alternative involves the combination of ingredients from traditional Chinese medicine (TCM) and beneficial gut microbiota (GM) metabolites. This study integrates ingredients of Salvia miltiorrhiza (SM) and metabolites of GM to assess their combined therapeutic efficacy against HIRI through pyroptosis using network pharmacology. Twenty-nine final targets were recognized as key proteins responsible for the alleviation of HIRI by SM ingredients and GM metabolites through pyroptosis, with GAPDH, AKT1, ILB1 emerging as central targets in the protein-protein interaction (PPI) network. The Toll-like receptor (TLR), NOD-like receptor (NLR), IL-17, TNF and MAPK signalling pathways were identified as key pathways in the therapeutic effects of SM ingredients and GM metabolites. Eight microRNAs (miRNAs) were predicted to be potential miRNAs exerting the most influence. Four SM ingredients and 11 GM metabolites were identified as non-toxic, promising candidates against HIRI. Moreover, the results of molecular docking showed all compounds were well combined with the corresponding proteins. This study highlights the therapeutic potential of TCM and beneficial GM in HIRI treatment and provides a foundational dataset for future research on their combined application. Further in vitro and in vivo studies are needed to validate these findings.
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.