Artificial Cells, Nanomedicine, and Biotechnology最新文献

筛选
英文 中文
Antibacterial potential of Euphorbia canariensis against Pseudomonas aeruginosa bacteria causing respiratory tract infections. 加那利大戟对引起呼吸道感染的铜绿假单胞菌的抗菌潜力。
IF 5.8 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-05-02 DOI: 10.1080/21691401.2024.2345891
Badriyah Alotaibi, Engy Elekhnawy, Thanaa A El-Masry, Asmaa Saleh, Manal E Alosaimi, Khalid Nijr Alotaibi, Walaa A Negm
{"title":"Antibacterial potential of <i>Euphorbia canariensis</i> against <i>Pseudomonas aeruginosa</i> bacteria causing respiratory tract infections.","authors":"Badriyah Alotaibi, Engy Elekhnawy, Thanaa A El-Masry, Asmaa Saleh, Manal E Alosaimi, Khalid Nijr Alotaibi, Walaa A Negm","doi":"10.1080/21691401.2024.2345891","DOIUrl":"10.1080/21691401.2024.2345891","url":null,"abstract":"<p><p>The widespread dissemination of bacterial resistance has led to great attention being paid to finding substitutes for traditionally used antibiotics. Plants are rich in various phytochemicals that could be used as antibacterial therapies. Here, we elucidate the phytochemical profile of <i>Euphorbia canariensis</i> ethanol extract (EMEE) and then elucidate the antibacterial potential of ECEE against <i>Pseudomonas aeruginosa</i> clinical isolates. ECEE showed minimum inhibitory concentrations ranging from 128 to 512 µg/mL. The impact of ECEE on the biofilm-forming ability of the tested isolates was elucidated using crystal violet assay and qRT-PCR to study its effect on the gene expression level. ECEE exhibited antibiofilm potential, which resulted in a downregulation of the expression of the biofilm genes (algD, pelF, and <i>psl</i>D) in 39.13% of the tested isolates. The antibacterial potential of ECEE was studied <i>in vivo</i> using a lung infection model in mice. A remarkable improvement was observed in the ECEE-treated group, as revealed by the histological and immunohistochemical studies. Also, ELISA showed a noticeable decrease in the oxidative stress markers (nitric oxide and malondialdehyde). The gene expression of the proinflammatory marker (interleukin-6) was downregulated, while the anti-inflammatory biomarker was upregulated (interleukin-10). Thus, clinical trials should be performed soon to explore the potential antibacterial activity of ECEE, which could help in our battle against resistant pathogenic bacteria.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"261-269"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140850388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 5.8 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-02-23 DOI: 10.1080/21691401.2024.2321017
{"title":"Correction.","authors":"","doi":"10.1080/21691401.2024.2321017","DOIUrl":"https://doi.org/10.1080/21691401.2024.2321017","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"130"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Panicum maximum Jacq. mediated green synthesis of silver nanoparticles: synthesis, characterization, and biological activities supported by molecular docking. Panicum maximum Jacq.介导的银纳米粒子的绿色合成:分子对接支持的合成、表征和生物活性。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-08-28 DOI: 10.1080/21691401.2024.2395811
Heba W Alhamdi, Hanan Khalaf Anazi, Fatma Alzahraa Mokhtar, Seham S Elhawary, Serag Eldin I Elbehairi, Mohammad Y Alfaifi, Ali A Shati, Lamiaa I Fahmy, Engy Elekhnawy, Afnan Hassan, Walaa A Negm, Sherif Ashraf Fahmy, Nabil Selim
{"title":"<i>Panicum maximum</i> Jacq. mediated green synthesis of silver nanoparticles: synthesis, characterization, and biological activities supported by molecular docking.","authors":"Heba W Alhamdi, Hanan Khalaf Anazi, Fatma Alzahraa Mokhtar, Seham S Elhawary, Serag Eldin I Elbehairi, Mohammad Y Alfaifi, Ali A Shati, Lamiaa I Fahmy, Engy Elekhnawy, Afnan Hassan, Walaa A Negm, Sherif Ashraf Fahmy, Nabil Selim","doi":"10.1080/21691401.2024.2395811","DOIUrl":"https://doi.org/10.1080/21691401.2024.2395811","url":null,"abstract":"<p><p>This study uses the aerial parts of <i>Panicum maximum</i> total extract (PMTE) to synthesize silver nanoparticles (AgNPs) in an environmentally friendly manner. TEM, SEM, FTIR, X-ray powder diffraction (XRD), Zeta potential, UV, and FTIR were used to characterize the green silver nanoparticles (PM-AgNPs). PM-AgNPs were evaluated as anticancer agents compared to (PMTE) against breast (MCF-7), lung (A549), and ovary adenocarcinoma (SKOV3) human tumour cells. The antibacterial activity of AgNPs was assessed against <i>Staphylococcus aureus</i> isolates. The PM-AgNPs had an absorbance of 418 nm, particle size of 15.18 nm, and zeta potential of -22.4 mV, ensuring the nanosilver's stability. XRD evaluated the crystallography nature of the formed PM-AgNPs. The cytotoxic properties of PM-AgNPs on MCF-7 and SKOV 3 were the strongest, with IC50s of 0.13 ± 0.015 and 3.5 ± 0.5 g/ml, respectively, as compared to A549 (13 ± 3.2 µg/mL). The increase in the apoptotic cells was 97.79 ± 1.61 and 96.6 ± 1.91% for MCF-7 and SKOV3 cell lines, respectively. PM-AgNPs were found to affect the membrane integrity and membrane permeability of 50 and 43.75% of the tested isolates, respectively. Also, PM-AgNPs have recorded a reduction in the biofilm formation of <i>S. aurues</i>. These results suggest using PM-AgNPs to treat breast and ovarian cancers.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"411-425"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dodecafluoropentane emulsion as an oxygen therapeutic. 作为氧气治疗剂的十二氟戊烷乳液。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-09-22 DOI: 10.1080/21691401.2024.2402908
Jennifer L H Johnson, Evan Unger
{"title":"Dodecafluoropentane emulsion as an oxygen therapeutic.","authors":"Jennifer L H Johnson, Evan Unger","doi":"10.1080/21691401.2024.2402908","DOIUrl":"https://doi.org/10.1080/21691401.2024.2402908","url":null,"abstract":"<p><p>Dodecafluoropentane emulsion (DDFPe) is a fluorocarbon (FC) under clinical development as an oxygen therapeutic and is regulated as a blood substitute. Compared to all the prior FCs studied, DDFP is the most advantageous for oxygen delivery and it is active at a lower concentration (1/200th to 1/1000th the weight of other FCs). DDFP has a boiling point of 29 °C, is more water soluble than prior FCs, and following IV administration clears <i>via</i> exhalation. Prior FCs had boiling points ≥ 140 °C and were retained long-term in the body causing adverse events. DDFP is a gas at biological temperature while prior FCs were liquids. Gases deliver roughly 1000 times more oxygen than liquids. DDFPe has two mechanisms of action: (1) The size of the molecule is the smallest that is a liquid at room temperature; on a molar volume basis this equates to more dissolution of oxygen. (2) Because of its boiling point close to physiologic temperature, DDFP delivers oxygen more effectively than liquid FCs.Highlight PointsFluorocarbons (FCs) dissolve oxygen and other respirable gases.FC emulsions generally do not have biological effects of and by themselves, but rather they increase the oxygen carrying capacity of the blood.There are a variety of FCs that were developed in the past as blood substitutes but they all caused accumulation in humans leading to toxic responses.Dodecafluoropentane emulsion (DDFPe) is being developed as an oxygen therapeutic to increase the oxygen carrying capacity of the blood and oxygen delivery to tissues.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"462-475"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational metal-flavonoids complexes presentation of greenly synthesized silver nanoparticles combined flavonoids from Lens culinaris L. as anticancer agents using BcL-2 and IspC proteins. 利用 BcL-2 和 IspC 蛋白对绿色合成的银纳米粒子与来自 Lens culinaris L. 的黄酮类化合物结合作为抗癌剂的金属-黄酮类化合物复合物的计算演示。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-10-27 DOI: 10.1080/21691401.2024.2420414
Heba W Alhamdi, Fatma Alzahraa Mokhtar, Fouad Lamghari Ridouane, Ali A Shati, Serag Eldin I Elbehairi, Lamiaa I Fahmy, Mohammad Y Alfaifi, Nada K Sedky, Heba A Fahmy
{"title":"Computational metal-flavonoids complexes presentation of greenly synthesized silver nanoparticles combined flavonoids from <i>Lens culinaris L.</i> as anticancer agents using BcL-2 and IspC proteins.","authors":"Heba W Alhamdi, Fatma Alzahraa Mokhtar, Fouad Lamghari Ridouane, Ali A Shati, Serag Eldin I Elbehairi, Lamiaa I Fahmy, Mohammad Y Alfaifi, Nada K Sedky, Heba A Fahmy","doi":"10.1080/21691401.2024.2420414","DOIUrl":"10.1080/21691401.2024.2420414","url":null,"abstract":"<p><p><i>Lens culinaris L.</i>, has been widely recognized for its medical applications. LC-ESI-TOF-MS identified 22 secondary metabolites including phenolics, flavonoids, and anthocyanidin glycosides among its total extract (LCTE). The study aimed to apply LCTE as a biogenic material for reducing and capping the silver nanoparticles (LC-AgNPs). The ynthesized LC-AgNPs were characterized using different techniques. The UV absorption was observed at <i>λ</i><sub>max</sub> 379 nm. LC-AgNPs were spherical, with 19.22 nm average size. The face cubic centre nature was demonstrated by HR-TEM and XRD. The LC-AgNPs were then evaluated for their anticancer and antimicrobial potentials. LC-AgNPs showed an extremely potent cytotoxic activity against MCF-7, HCT-116 and HepG2 cell lines (IC<sub>50</sub>= 0.37, 0.35 and 0.1 µg/mL, respectively). LC-AgNPs induced significant apoptotic effects in the three examined cancer cell lines. LC-AgNPs resulted in sequestration of cells in G1 phase of the cell cycle in both MCF-7 and HCT-116 cells, meanwhile it trapped cells at the G2 phase in HepG2 cells. Moreover, the antimicrobial activity of LC-AgNPs was highly confirmed against <i>Klebsiella pneumoniae</i> and <i>Acinetobacter baumannii</i>. Molecular docking study designated Kaempferol-3-O-robinoside-7-O-rhamnoside and Quercetin-3-D-xyloside as the topmost LCTE active constituents that caused inhibition of both Bcl-2 and IspC cancer targets in combination with the produced silver nanoparticles.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"529-550"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis of anoikis-related genes in diagnosis osteoarthritis: based on machine learning and single-cell RNA sequencing data. 基于机器学习和单细胞 RNA 测序数据的骨关节炎诊断中 anoikis 相关基因的综合分析。
IF 5.8 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-02-29 DOI: 10.1080/21691401.2024.2318210
Jun-Song Zhang, Run-Sang Pan, Guo-Lu Li, Jian-Xiang Teng, Hong-Bo Zhao, Chang-Hua Zhou, Ji-Sheng Zhu, Hao Zheng, Xiao-Bin Tian
{"title":"Comprehensive analysis of anoikis-related genes in diagnosis osteoarthritis: based on machine learning and single-cell RNA sequencing data.","authors":"Jun-Song Zhang, Run-Sang Pan, Guo-Lu Li, Jian-Xiang Teng, Hong-Bo Zhao, Chang-Hua Zhou, Ji-Sheng Zhu, Hao Zheng, Xiao-Bin Tian","doi":"10.1080/21691401.2024.2318210","DOIUrl":"10.1080/21691401.2024.2318210","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a degenerative disease closely associated with Anoikis. The objective of this work was to discover novel transcriptome-based anoikis-related biomarkers and pathways for OA progression.The microarray datasets GSE114007 and GSE89408 were downloaded using the Gene Expression Omnibus (GEO) database. A collection of genes linked to anoikis has been collected from the GeneCards database. The intersection genes of the differential anoikis-related genes (DEARGs) were identified using a Venn diagram. Infiltration analyses were used to identify and study the differentially expressed genes (DEGs). Anoikis clustering was used to identify the DEGs. By using gene clustering, two OA subgroups were formed using the DEGs. GSE152805 was used to analyse OA cartilage on a single cell level. 10 DEARGs were identified by lasso analysis, and two Anoikis subtypes were constructed. MEgreen module was found in disease WGCNA analysis, and MEturquoise module was most significant in gene clusters WGCNA. The XGB, SVM, RF, and GLM models identified five hub genes (CDH2, SHCBP1, SCG2, C10orf10, P FKFB3), and the diagnostic model built using these five genes performed well in the training and validation cohorts. analysing single-cell RNA sequencing data from GSE152805, including 25,852 cells of 6 OA cartilage.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"156-174"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harvesting decellularized liver extracellular matrix from rodents for 3D scaffold fabrication. 从啮齿动物身上采集脱细胞肝脏细胞外基质,用于三维支架制造。
IF 5.8 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-02-29 DOI: 10.1080/21691401.2024.2319893
Meghana Kasturi, Kirthanashri S Vasanthan
{"title":"Harvesting decellularized liver extracellular matrix from rodents for 3D scaffold fabrication.","authors":"Meghana Kasturi, Kirthanashri S Vasanthan","doi":"10.1080/21691401.2024.2319893","DOIUrl":"10.1080/21691401.2024.2319893","url":null,"abstract":"<p><p>Decellularization is a process to harvest the decellularized extra cellular matrix (dECM) that helps develop 3D scaffolds which mimic the native tissue composition. The decellularized tissues retain the structural and functional properties of the extracellular matrix (ECM) by an efficient decellularization process that retains tissue-specific biochemical and biophysical cues for tissue regeneration. In this study, we report an injection-based decellularization method, without perfusion setup. This study also compares the efficiency of the proposed protocol in the two animal models viz rat and mice. This method harvests rat and mice liver dECM using ethylenediamine tetra acetic acid (EDTA) and sodium dodecyl sulphate (SDS) within 08 h and 02 h respectively and preserved significant amount of ECM proteins. We reported that the harvested mice decellularized extracellular matrix (mdECM) and rat decellularized extracellular matrix (rdECM) had significant reduction in their DNA content (∼97%) and retained structural architecture resembling their native tissue counterparts. The total protein content retained in mdECM was ∼39% while that retained in rdECM was ∼65%. It was also found that the sGAG (sulphated glycosaminoglycan) content showed a no List of Figures.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"175-185"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibitory effects of Curcumae Radix carbonisata-based carbon dots against liver fibrosis induced by carbon tetrachloride in mice. 姜黄碳点对四氯化碳致小鼠肝纤维化的抑制作用。
IF 5.8 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2023-11-30 DOI: 10.1080/21691401.2023.2239522
Yusheng Zhao, Hui Kong, Yuru Li, Yafang Zhao, Yue Zhang, Yan Zhao, Huihua Qu
{"title":"Inhibitory effects of <i>Curcumae Radix carbonisata</i>-based carbon dots against liver fibrosis induced by carbon tetrachloride in mice.","authors":"Yusheng Zhao, Hui Kong, Yuru Li, Yafang Zhao, Yue Zhang, Yan Zhao, Huihua Qu","doi":"10.1080/21691401.2023.2239522","DOIUrl":"10.1080/21691401.2023.2239522","url":null,"abstract":"<p><p>As a processed product of traditional Chinese medicine <i>Curcumae Radix</i>, <i>Curcumae Radix Carbonisata</i> (CRC) has been widely used in the treatment of liver diseases in ancient medical books. In this study, novel carbon dots (CDs) extending from 1.0 to 4.5 nm were separated from fluid extricates of CRC. Meanwhile, a liver fibrosis model induced by carbon tetrachloride (CCl<sub>4</sub>) was utilized to determine the inhibitory effects of CRC-CDs against liver fibrosis. The results exhibited the CRC-CDs with a quantum yield of 1.34% have a significant inhibitory effect on CCl<sub>4</sub>-induced liver fibrosis, as demonstrated by improving hepatocyte degeneration and necrosis, inflammatory cell infiltration and fibrotic tissue hyperplasia, downregulating the levels of alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), total bile acid (TBA), triglyceride (TG), tumour necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β in the serum, upregulating the contents of superoxide dismutase (SOD), reduced glutathione (GSH), and downregulating the concentration of malondialdehyde (MDA), which lays an important foundation for the development of CRC-CDs as a novel drug for the treatment of liver fibrosis, and provide a certain experimental basis for the clinical application of CRC-CDs in the future.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"23-34"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138457479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HBOC alleviated tumour hypoxia during radiotherapy more intensely in large solid tumours than regular ones. HBOC对大实体瘤放疗期间肿瘤缺氧的缓解作用强于普通实体瘤。
IF 5.8 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2023-11-23 DOI: 10.1080/21691401.2023.2276768
Yingcan Xu, Kehui Zhu, Jiakang Wu, Shifan Zheng, Rui Zhong, Wentao Zhou, Ye Cao, Jiaxin Liu, Hong Wang
{"title":"HBOC alleviated tumour hypoxia during radiotherapy more intensely in large solid tumours than regular ones.","authors":"Yingcan Xu, Kehui Zhu, Jiakang Wu, Shifan Zheng, Rui Zhong, Wentao Zhou, Ye Cao, Jiaxin Liu, Hong Wang","doi":"10.1080/21691401.2023.2276768","DOIUrl":"10.1080/21691401.2023.2276768","url":null,"abstract":"<p><p>Radiotherapy (RT) is a highly valuable method in cancer therapy, but its therapeutic efficacy is limited by its side effects and tumour radiation resistance. The resistance is mainly induced by hypoxia in the tumour microenvironment (TME). As a nano-oxygen carrier, Haemoglobin-based oxygen carriers (HBOCs) administration is a promising strategy to alleviate tumour hypoxia which may remodel TME to ameliorate radiation resistance and enable RT more effective. In this study, we administered fractionated RT combined with HBOC to treat Miapaca-2 cell and Hela cell xenografts on nude mice. The study found that HBOC relieved hypoxic environment and down-regulate expression of hypoxia-inducible factor-1α (Hif-1α) both in regular (100 mm<sup>3</sup>) and large (360/400 mm<sup>3</sup>) tumours. The proliferation and metastasis of tumour tissue also decreased after HBOC application. Nevertheless, <i>in vivo</i> RT combined with HBOC performed more effectively to suppress tumour growth in large tumours than in regular tumours. This is due to more severe hypoxic regions exist in the large solid tumours compared to the regular counterparts, and HBOC administration may be more effective in alleviating hypoxia in large tumours. Thus, HBOC sensitization therapy is more suitable for large solid tumours.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"1-14"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138294567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds - preparation, characterisation, and evaluation. 海藻酸钠/芦荟/丝裂霉素复合支架的止血效力--制备、表征和评估。
IF 5.8 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2024-12-01 Epub Date: 2023-12-19 DOI: 10.1080/21691401.2023.2293784
Jayavardhini Bhoopathy, Weslen Vedakumari Sathyaraj, Beryl Vedha Yesudhason, Selvarajan Rajendran, Sankari Dharmalingam, Jayashri Seetharaman, Ranjitha Muthu, Ramachandran Murugesan, Subramanian Raghunandhakumar, Suresh Kumar Anandasadagopan
{"title":"Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds - preparation, characterisation, and evaluation.","authors":"Jayavardhini Bhoopathy, Weslen Vedakumari Sathyaraj, Beryl Vedha Yesudhason, Selvarajan Rajendran, Sankari Dharmalingam, Jayashri Seetharaman, Ranjitha Muthu, Ramachandran Murugesan, Subramanian Raghunandhakumar, Suresh Kumar Anandasadagopan","doi":"10.1080/21691401.2023.2293784","DOIUrl":"10.1080/21691401.2023.2293784","url":null,"abstract":"<p><p>Fabrication of haemostatic materials with excellent antimicrobial, biocompatible and biodegradable properties remains as a major challenge in the field of medicine. Haemostatic agents play vital role in protecting patients and military individuals during emergency situations. Natural polymers serve as promising materials for fabricating haemostatic compounds due to their efficacy in promoting hemostasis and wound healing. In the present work, sodium alginate/aloe vera/sericin (SA/AV/S) scaffold has been fabricated using a simple cost-effective casting method. The prepared SA/AV/S scaffolds were characterised for their physicochemical properties such as scanning electron microscope, UV-visible spectroscopy and Fourier transform infra-red spectroscopy. SA/AV/S scaffold showed good mechanical strength, swelling behaviour and antibacterial activity. In vitro experiments using erythrocytes proved the hemocompatible and biocompatible features of SA/AV/S scaffold. In vitro blood clotting assay performed using human blood demonstrated the haemostatic and blood absorption properties of SA/AV/S scaffold. Scratch wound assay was performed to study the wound healing efficacy of prepared scaffolds. Chick embryo chorioallantoic membrane assay carried out using fertilised embryos proved the angiogenic property of SA/AV/S scaffold. Thus, SA/AV/S scaffold could serve as a potential haemostatic healthcare product due to its outstanding haemostatic, antimicrobial, hemocompatible, biocompatible and angiogenic properties.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"35-45"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138796295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信