Artificial Cells, Nanomedicine, and Biotechnology最新文献

筛选
英文 中文
Correction. 修正。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-03-07 DOI: 10.1080/21691401.2025.2476906
{"title":"Correction.","authors":"","doi":"10.1080/21691401.2025.2476906","DOIUrl":"https://doi.org/10.1080/21691401.2025.2476906","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"104"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statement of Retraction: Myricetin nanoliposomes induced SIRT3-mediated glycolytic metabolism leading to glioblastoma cell death. 撤回声明:杨梅素纳米脂质体诱导sirt3介导的糖酵解代谢导致胶质母细胞瘤细胞死亡。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-03-27 DOI: 10.1080/21691401.2025.2465942
{"title":"Statement of Retraction: Myricetin nanoliposomes induced SIRT3-mediated glycolytic metabolism leading to glioblastoma cell death.","authors":"","doi":"10.1080/21691401.2025.2465942","DOIUrl":"https://doi.org/10.1080/21691401.2025.2465942","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"56"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purinergic ecto-enzymes in human and ovine aortic valves: indicators of bacterial nanocellulose scaffold cellularization. 人和羊主动脉瓣的嘌呤能外泌酶:细菌纳米纤维素支架细胞化的指标。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-05-12 DOI: 10.1080/21691401.2025.2502033
Barbara Kutryb-Zając, Ada Kawecka, Gabriela Harasim, Michał Bieńkowski, Klaudia Stawarska, Krzysztof Urbanowicz, Ryszard T Smoleński, Maciej M Kowalik, Magdalena Kołaczkowska, Piotr Siondalski
{"title":"Purinergic ecto-enzymes in human and ovine aortic valves: indicators of bacterial nanocellulose scaffold cellularization.","authors":"Barbara Kutryb-Zając, Ada Kawecka, Gabriela Harasim, Michał Bieńkowski, Klaudia Stawarska, Krzysztof Urbanowicz, Ryszard T Smoleński, Maciej M Kowalik, Magdalena Kołaczkowska, Piotr Siondalski","doi":"10.1080/21691401.2025.2502033","DOIUrl":"https://doi.org/10.1080/21691401.2025.2502033","url":null,"abstract":"<p><p>Purinergic signalling pathways play a vital role in the biological functions of the aortic valve (AV) through nucleotide and adenosine-dependent receptor effects. This study focused on characterizing a side-specific purinergic cascade in human non-stenotic and stenotic AVs, ovine native AVs and a novel bacterial nanocellulose (BNC) bio-prosthesis in an ovine model. Human stenotic AVs were collected during replacement surgeries, while non-stenotic AVs came from heart transplant patients. Ovine native AVs were sourced from domestic sheep, and the BNC prosthesis was implanted in the ovine aorta for six months, with hemodynamic monitoring throughout. Biochemical assessments revealed a beneficial ecto-enzyme pattern in non-stenotic and native AVs, contrasting with a detrimental pattern in stenotic valves. The BNC prosthesis demonstrated significantly lower nucleotide conversion activities than native valves and displayed increased peripheral blood mononuclear cell adhesion on its aortic surface. These findings suggest that nucleotide-converting ecto-enzymes could serve as markers for the biological activity of AV prostheses, highlighting the need for further studies to enhance the cellularization of BNC prostheses, potentially through adenosine-releasing scaffold modifications.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"219-230"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143958081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating the integrative role and possible molecular mechanisms of Salvia miltiorrhiza ingredients and gut microbiota-derived metabolites in alleviating pyroptosis-mediated hepatic ischemia-reperfusion injury through network pharmacology. 通过网络药理学研究丹参成分和肠道微生物代谢物在减轻焦热介导的肝缺血再灌注损伤中的综合作用及其可能的分子机制。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-08-21 DOI: 10.1080/21691401.2025.2547646
Rujia Wang, Danhong Yang, Yi Chen, Jiabing Wang
{"title":"Elucidating the integrative role and possible molecular mechanisms of <i>Salvia miltiorrhiza</i> ingredients and gut microbiota-derived metabolites in alleviating pyroptosis-mediated hepatic ischemia-reperfusion injury through network pharmacology.","authors":"Rujia Wang, Danhong Yang, Yi Chen, Jiabing Wang","doi":"10.1080/21691401.2025.2547646","DOIUrl":"https://doi.org/10.1080/21691401.2025.2547646","url":null,"abstract":"<p><p>Currently, therapeutic options for hepatic ischemia-reperfusion injury (HIRI) remain limited and challenging. An emerging alternative involves the combination of ingredients from traditional Chinese medicine (TCM) and beneficial gut microbiota (GM) metabolites. This study integrates ingredients of <i>Salvia miltiorrhiza</i> (SM) and metabolites of GM to assess their combined therapeutic efficacy against HIRI through pyroptosis using network pharmacology. Twenty-nine final targets were recognized as key proteins responsible for the alleviation of HIRI by SM ingredients and GM metabolites through pyroptosis, with GAPDH, AKT1, ILB1 emerging as central targets in the protein-protein interaction (PPI) network. The Toll-like receptor (TLR), NOD-like receptor (NLR), IL-17, TNF and MAPK signalling pathways were identified as key pathways in the therapeutic effects of SM ingredients and GM metabolites. Eight microRNAs (miRNAs) were predicted to be potential miRNAs exerting the most influence. Four SM ingredients and 11 GM metabolites were identified as non-toxic, promising candidates against HIRI. Moreover, the results of molecular docking showed all compounds were well combined with the corresponding proteins. This study highlights the therapeutic potential of TCM and beneficial GM in HIRI treatment and provides a foundational dataset for future research on their combined application. Further <i>in vitro</i> and <i>in vivo</i> studies are needed to validate these findings.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"420-435"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144940560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statement of Retraction. 撤回声明。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-09-23 DOI: 10.1080/21691401.2025.2558474
{"title":"Statement of Retraction.","authors":"","doi":"10.1080/21691401.2025.2558474","DOIUrl":"https://doi.org/10.1080/21691401.2025.2558474","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"439"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145124140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Injectable thermosensitive methylcellulose-carboxymethyl chitosan hydrogel for the delivery of human amniotic fluid mesenchymal stromal cell spheroids in cartilage regeneration. 可注射热敏甲基纤维素-羧甲基壳聚糖水凝胶用于软骨再生中人羊水间充质间质细胞球体的递送。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-10-07 DOI: 10.1080/21691401.2025.2566710
Carolina Coli Zuliani, Jéssica Bruna da Cunha, Rodolpho Fagundes Correa, Eronildo Alves Pinto Júnior, Marcos Akira d'Ávila, Ângela Maria Moraes, Ibsen Bellini Coimbra
{"title":"Injectable thermosensitive methylcellulose-carboxymethyl chitosan hydrogel for the delivery of human amniotic fluid mesenchymal stromal cell spheroids in cartilage regeneration.","authors":"Carolina Coli Zuliani, Jéssica Bruna da Cunha, Rodolpho Fagundes Correa, Eronildo Alves Pinto Júnior, Marcos Akira d'Ávila, Ângela Maria Moraes, Ibsen Bellini Coimbra","doi":"10.1080/21691401.2025.2566710","DOIUrl":"https://doi.org/10.1080/21691401.2025.2566710","url":null,"abstract":"<p><p>Cartilage injuries caused by trauma or degenerative conditions such as osteoarthritis have limited intrinsic healing capacity and often require invasive interventions. This study proposes a minimally invasive therapeutic strategy using spheroids of human amniotic fluid-derived mesenchymal stromal cells (AF-MSCs) embedded in a thermosensitive hydrogel composed of 10% (w/v) methylcellulose and 1% (w/v) carboxymethyl chitosan (M10C1). AF-MSCs spheroids, generated in 3D culture under TGF-β3 stimulation, exhibited high viability and robust extracellular matrix production, including type II collagen and aggrecan. Rheological characterisation confirmed that M10C1 displays shear-thinning behaviour and gelation near physiological temperatures (∼30 °C), making it suitable for injection and 3D bioprinting. Importantly, confocal microscopy and fusion assays demonstrated that the hydrogel preserved spheroid bioassembly and viability. Co-culture with human cartilage explants further showed that M10C1 promoted spheroid adhesion without hindering integration into native tissue. These findings highlight the potential of this AF-MSCs spheroid-hydrogel system as an injectable, biocompatible platform for cartilage repair, with promising applications in regenerative medicine and bioengineered tissue therapies.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"453-467"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145237825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal attention fusion deep self-reconstruction presentation model for Alzheimer's disease diagnosis and biomarker identification. 多模态注意力融合深度自我重建呈现模型用于阿尔茨海默病诊断和生物标志物识别。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-05-23 DOI: 10.1080/21691401.2025.2506591
Shan Huang, Yixin Liu, Jingyu Zhang, Yiming Wang
{"title":"Multimodal attention fusion deep self-reconstruction presentation model for Alzheimer's disease diagnosis and biomarker identification.","authors":"Shan Huang, Yixin Liu, Jingyu Zhang, Yiming Wang","doi":"10.1080/21691401.2025.2506591","DOIUrl":"https://doi.org/10.1080/21691401.2025.2506591","url":null,"abstract":"<p><p>The unknown pathogenic mechanisms of Alzheimer's disease (AD) make treatment challenging. Neuroimaging genetics offers a method for identifying disease biomarkers for early diagnosis, but traditional approaches struggle with complex non-linear, multimodal and multi-expression data. However, traditional association analysis methods face challenges in handling nonlinear, multimodal and multi-expression data. Therefore, a multimodal attention fusion deep self-restructuring presentation (MAFDSRP) model is proposed to solve the above problem. First, multimodal brain imaging data are processed through a novel histogram-matching multiple attention mechanisms to dynamically adjust the weight of each input brain image data. Simultaneous, the genetic data are preprocessed to remove low-quality samples. Subsequently, the genetic data and fused neuroimaging data are separately input into the self-reconstruction network to learn the nonlinear relationships and perform subspace clustering at the top layer of the network. Finally, the learned genetic data and fused neuroimaging data are analysed through expression association analysis to identify AD-related biomarkers. The identified biomarkers underwent systematic multi-level analysis, revealing biomarker roles at molecular, tissue and functional levels, highlighting processes like inflammation, lipid metabolism, memory and emotional processing linked to AD. The experimental results show that MAFDSRP achieved 0.58 in association analysis, demonstrating its great potential in accurately identifying AD-related biomarkers.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"231-243"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144135996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of macrophage-associated diagnostic biomarkers and molecular subtypes in gestational diabetes mellitus based on machine learning. 基于机器学习的妊娠糖尿病巨噬细胞相关诊断生物标志物和分子亚型鉴定
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-06-06 DOI: 10.1080/21691401.2025.2513893
Kai Wei, Liyun Yuan, Yongsheng Ge, Han Yu, Guoping Zhao, Guoqing Zhang, Guohua Liu
{"title":"Identification of macrophage-associated diagnostic biomarkers and molecular subtypes in gestational diabetes mellitus based on machine learning.","authors":"Kai Wei, Liyun Yuan, Yongsheng Ge, Han Yu, Guoping Zhao, Guoqing Zhang, Guohua Liu","doi":"10.1080/21691401.2025.2513893","DOIUrl":"https://doi.org/10.1080/21691401.2025.2513893","url":null,"abstract":"<p><p>Gestational diabetes mellitus (GDM) is a common metabolic disorder during pregnancy, involving multiple immune and inflammatory factors. Macrophages play a crucial role in its development. This study integrated scRNA-seq and RNA-seq data to explore macrophage-related diagnostic genes and GDM subtypes. For scRNA-seq data, cell clusters were annotated using the SingleR package and validated with marker gene expression profiles, while hdWGCNA analysis identified three gene modules related to macrophages. A diagnostic model for GDM derived from endothelial cell transcriptomes was constructed by employing a variety of machine learning ensemble algorithms, achieving an AUC of 0.887. The model identified five differentially expressed genes (ZEB2, MALAT1, HEBP1, AHSA1, and TTC3) as potential diagnostic biomarkers. The CB-DSNMF algorithm was proposed to identify two distinct GDM subtypes from RNA-seq data, revealing significant differences in biological behaviours. This algorithm outperformed other baselines in multiple clustering metrics. Mendelian randomisation analysis identified ZEB2 as a gene causally related to GDM risk. A transcription factor (TF)-gene regulatory network was constructed for these genes using the ENCODE database. The study highlights the importance of macrophages in GDM, provides a high-precision diagnostic model, and offers new insights into personalised treatment strategies, contributing to a better understanding of GDM pathophysiology.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"20-33"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144233033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing cues from developmental neurogenesis and gliogenesis for better in vitro brain models. 利用发育性神经发生和胶质瘤发生的线索建立更好的体外脑模型。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-09-26 DOI: 10.1080/21691401.2025.2562828
Martha L Gallagher, H R Parri, Ewan Ross, Eric J Hill
{"title":"Utilizing cues from developmental neurogenesis and gliogenesis for better <i>in vitro</i> brain models.","authors":"Martha L Gallagher, H R Parri, Ewan Ross, Eric J Hill","doi":"10.1080/21691401.2025.2562828","DOIUrl":"https://doi.org/10.1080/21691401.2025.2562828","url":null,"abstract":"<p><p>With a globally ageing population, neurodegenerative disease poses an increasingly greater risk to health span, yet there are still no curative treatments. Efficient biomimetic modelling is the underlying target for improving preclinical-to-clinical translation of therapies, yet current techniques are poorly translated to clinical studies: animal models, 2D cell culture, as well as 3D spheroid and organoid cultures all have disadvantages which could be resolved by a tuneable, standardized approach. As such, 3D tissue engineered human models have huge potential, but even biomimetic, repeatable, translatable engineered tissues lack maturity in the neural networks created. Neurogenesis and gliogenesis are the processes by which new neurons and glia are created <i>in vivo</i>, mediated by architectural, cellular microenvironmental, and signalling cues which could be adopted in the engineering and synthesis of 3D neural models. This review will look at neurogenic and gliogenic cues and their engineered incorporation to overcome common shortcomings of <i>in vitro</i> 3D neural models-namely maturity, complexity, and reproducibility.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"440-452"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145172755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human tendon stem/progenitor cell-derived extracellular vesicle production promoted by dynamic culture. 动态培养促进人肌腱干/祖细胞来源的细胞外囊泡生成。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-03-10 DOI: 10.1080/21691401.2025.2475099
Marta Clerici, Maria Camilla Ciardulli, Erwin Pavel Lamparelli, Joseph Lovecchio, Emanuele Giordano, Tina P Dale, Nicholas R Forsyth, Nicola Maffulli, Giovanna Della Porta
{"title":"Human tendon stem/progenitor cell-derived extracellular vesicle production promoted by dynamic culture.","authors":"Marta Clerici, Maria Camilla Ciardulli, Erwin Pavel Lamparelli, Joseph Lovecchio, Emanuele Giordano, Tina P Dale, Nicholas R Forsyth, Nicola Maffulli, Giovanna Della Porta","doi":"10.1080/21691401.2025.2475099","DOIUrl":"10.1080/21691401.2025.2475099","url":null,"abstract":"<p><p>Tendon injuries significantly impact quality of life, prompting the exploration of innovative solutions beyond conventional surgery. Extracellular Vesicles (EVs) have emerged as a promising strategy to enhance tendon regeneration. In this study, human Tendon Stem/Progenitor Cells (TSPCs) were isolated from surgical biopsies and cultured in a Growth-Differentiation Factor-5-supplemented medium to promote tenogenic differentiation under static and dynamic conditions using a custom-made perfusion bioreactor. Once at 80% confluence, cells were transitioned to a serum-free medium for conditioned media collection. Ultracentrifugation revealed the presence of vesicles with a 10<sup>6</sup> particles/mL concentration and sub-200nm diameter size. Dynamic culture yielded a 3-fold increase in EV protein content compared to static culture, as confirmed by Western-blot analysis. Differences in surface marker expression were also shown by flow cytometric analysis. Data suggest that we efficiently developed a protocol for extracting EVs from human TSPCs, particularly under dynamic conditions. This approach enhances EV protein content, offering potential therapeutic benefits for tendon regeneration. However, further research is needed to fully understand the role of EVs in tendon regeneration.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"1-16"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143596200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信