Kai Wei, Liyun Yuan, Yongsheng Ge, Han Yu, Guoping Zhao, Guoqing Zhang, Guohua Liu
{"title":"基于机器学习的妊娠糖尿病巨噬细胞相关诊断生物标志物和分子亚型鉴定","authors":"Kai Wei, Liyun Yuan, Yongsheng Ge, Han Yu, Guoping Zhao, Guoqing Zhang, Guohua Liu","doi":"10.1080/21691401.2025.2513893","DOIUrl":null,"url":null,"abstract":"<p><p>Gestational diabetes mellitus (GDM) is a common metabolic disorder during pregnancy, involving multiple immune and inflammatory factors. Macrophages play a crucial role in its development. This study integrated scRNA-seq and RNA-seq data to explore macrophage-related diagnostic genes and GDM subtypes. For scRNA-seq data, cell clusters were annotated using the SingleR package and validated with marker gene expression profiles, while hdWGCNA analysis identified three gene modules related to macrophages. A diagnostic model for GDM derived from endothelial cell transcriptomes was constructed by employing a variety of machine learning ensemble algorithms, achieving an AUC of 0.887. The model identified five differentially expressed genes (ZEB2, MALAT1, HEBP1, AHSA1, and TTC3) as potential diagnostic biomarkers. The CB-DSNMF algorithm was proposed to identify two distinct GDM subtypes from RNA-seq data, revealing significant differences in biological behaviours. This algorithm outperformed other baselines in multiple clustering metrics. Mendelian randomisation analysis identified ZEB2 as a gene causally related to GDM risk. A transcription factor (TF)-gene regulatory network was constructed for these genes using the ENCODE database. The study highlights the importance of macrophages in GDM, provides a high-precision diagnostic model, and offers new insights into personalised treatment strategies, contributing to a better understanding of GDM pathophysiology.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"20-33"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of macrophage-associated diagnostic biomarkers and molecular subtypes in gestational diabetes mellitus based on machine learning.\",\"authors\":\"Kai Wei, Liyun Yuan, Yongsheng Ge, Han Yu, Guoping Zhao, Guoqing Zhang, Guohua Liu\",\"doi\":\"10.1080/21691401.2025.2513893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gestational diabetes mellitus (GDM) is a common metabolic disorder during pregnancy, involving multiple immune and inflammatory factors. Macrophages play a crucial role in its development. This study integrated scRNA-seq and RNA-seq data to explore macrophage-related diagnostic genes and GDM subtypes. For scRNA-seq data, cell clusters were annotated using the SingleR package and validated with marker gene expression profiles, while hdWGCNA analysis identified three gene modules related to macrophages. A diagnostic model for GDM derived from endothelial cell transcriptomes was constructed by employing a variety of machine learning ensemble algorithms, achieving an AUC of 0.887. The model identified five differentially expressed genes (ZEB2, MALAT1, HEBP1, AHSA1, and TTC3) as potential diagnostic biomarkers. The CB-DSNMF algorithm was proposed to identify two distinct GDM subtypes from RNA-seq data, revealing significant differences in biological behaviours. This algorithm outperformed other baselines in multiple clustering metrics. Mendelian randomisation analysis identified ZEB2 as a gene causally related to GDM risk. A transcription factor (TF)-gene regulatory network was constructed for these genes using the ENCODE database. The study highlights the importance of macrophages in GDM, provides a high-precision diagnostic model, and offers new insights into personalised treatment strategies, contributing to a better understanding of GDM pathophysiology.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"53 1\",\"pages\":\"20-33\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2025.2513893\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2513893","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Identification of macrophage-associated diagnostic biomarkers and molecular subtypes in gestational diabetes mellitus based on machine learning.
Gestational diabetes mellitus (GDM) is a common metabolic disorder during pregnancy, involving multiple immune and inflammatory factors. Macrophages play a crucial role in its development. This study integrated scRNA-seq and RNA-seq data to explore macrophage-related diagnostic genes and GDM subtypes. For scRNA-seq data, cell clusters were annotated using the SingleR package and validated with marker gene expression profiles, while hdWGCNA analysis identified three gene modules related to macrophages. A diagnostic model for GDM derived from endothelial cell transcriptomes was constructed by employing a variety of machine learning ensemble algorithms, achieving an AUC of 0.887. The model identified five differentially expressed genes (ZEB2, MALAT1, HEBP1, AHSA1, and TTC3) as potential diagnostic biomarkers. The CB-DSNMF algorithm was proposed to identify two distinct GDM subtypes from RNA-seq data, revealing significant differences in biological behaviours. This algorithm outperformed other baselines in multiple clustering metrics. Mendelian randomisation analysis identified ZEB2 as a gene causally related to GDM risk. A transcription factor (TF)-gene regulatory network was constructed for these genes using the ENCODE database. The study highlights the importance of macrophages in GDM, provides a high-precision diagnostic model, and offers new insights into personalised treatment strategies, contributing to a better understanding of GDM pathophysiology.
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.