{"title":"Honeyberry-derived carbon quantum dots ameliorate LPS-induced neuroinflammation and oxidative stress through Nrf2/HO-1 signalling in HMC3 cells","authors":"Sanjay, Anshul Sharma, Hae-Jeung Lee","doi":"10.1080/21691401.2023.2179062","DOIUrl":"https://doi.org/10.1080/21691401.2023.2179062","url":null,"abstract":"<p><b>Abstract</b></p><p>Carbon quantum dots (CQDs) were synthesized from blue honeysuckle (<i>Lonicera caerulea</i>) berry fruit extracts using a well-known, cost-effective, and environmental friendly hydrothermal process. The material was characterized using UV-vis spectroscopy, photoluminescence (PL), XPS, and TEM studies. The as-synthesized carbon dots exhibit excellent PL properties, with a quantum yield of ∼35.92%. CQDs vary in size from ∼2 nm to 9 nm. This study established the neuroprotective effects of CQDs against lipopolysaccharide (LPS)-induced human microglial cell model. LPS was found to induce cytotoxicity, reactive oxygen species, and pro-inflammatory cytokines interleukin (IL)-1β, IL-6, and tumour necrosis factor-α) and downregulated enzymatic antioxidants such as nuclear factor-erythroid factor 2-related factor 2 (Nrf2), superoxide dismutase, catalase, haem oxygenase (HO)-1, HO-2, and glutathione peroxidase, while CQDs treatment reversed LPS induced cytotoxicity, induced anti-inflammatory cytokines (IL-4, IL-10, and transforming growth factor β) and induce enzymatic antioxidants both at transcriptional and translational levels. The study suggested the potential role of CQDs prepared from <i>Lonicera caerulea</i>, as anti-inflammatory and antioxidative agents in neuroinflammatory and neurodegenerative diseases. In addition, CQDs could be exploited in various biomedical applications such as biosensing, drug delivery and tissue engineering.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"40 5","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eommolbanin Ebrahimi, Amir Ahmad Khandaghi, F. Valipour, Soraia Babaie, Fatemeh Asghari, Soheila Motaali, E. Abbasi, A. Akbarzadeh, S. Davaran
{"title":"Statement of Retraction","authors":"Eommolbanin Ebrahimi, Amir Ahmad Khandaghi, F. Valipour, Soraia Babaie, Fatemeh Asghari, Soheila Motaali, E. Abbasi, A. Akbarzadeh, S. Davaran","doi":"10.1080/21691401.2022.2060561","DOIUrl":"https://doi.org/10.1080/21691401.2022.2060561","url":null,"abstract":"The reused images have been described as originating from a new study with no reference to the previous studies. We contacted the corresponding authors, and they acknowledged the similarities in the data published. As this error directly impacts the reported results and conclusions, the Editor and Publisher have agreed to retract the article to ensure correction of the scholarly record. The corresponding author has been informed.","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"237 1","pages":"110 - 110"},"PeriodicalIF":5.8,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72905606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eommolbanin Ebrahimi, A. Akbarzadeh, E. Abbasi, Amir Ahmad Khandaghi, Farhad Abasalizadeh, S. Davaran
{"title":"Statement of Retraction","authors":"Eommolbanin Ebrahimi, A. Akbarzadeh, E. Abbasi, Amir Ahmad Khandaghi, Farhad Abasalizadeh, S. Davaran","doi":"10.1080/21691401.2022.2060559","DOIUrl":"https://doi.org/10.1080/21691401.2022.2060559","url":null,"abstract":"Figure 5 appears to have been duplicated with Figure 6 from Ebrahimi et al., 2014 (https://doi.org/10.3109/21691401. 2014.968822). Figure 6 appears to have been duplicated with Figure 7 from Ebrahimi et al., 2014 (https://doi.org/10.3109/21691401. 2014.968822) Figure 6 appears to have been duplicated with Figure 11 from Akbarzadeh et al., 2012 (https://doi.org/10.2147/ IJN.S24326) Figure 7 appears to have been duplicated with Figure 8 from Ebrahimi et al., 2014 (https://doi.org/10.3109/21691401. 2014.968822).","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"15 1","pages":"109 - 109"},"PeriodicalIF":5.8,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78788246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expression of Concern.","authors":"","doi":"10.1080/21691401.2022.2103238","DOIUrl":"https://doi.org/10.1080/21691401.2022.2103238","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":" ","pages":"221"},"PeriodicalIF":5.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40641059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of carbon monoxide administration using haemoglobin-vesicles on the hippocampal tissue.","authors":"Chie Okuda, Hiromi Sakai","doi":"10.1080/21691401.2022.2027428","DOIUrl":"https://doi.org/10.1080/21691401.2022.2027428","url":null,"abstract":"<p><p>Carbon monoxide (CO) is a toxic gas that causes neuropathy. However, CO is endogenously produced in small amounts showing various beneficial effects. We hypothesized that CO-bound haemoglobin-vesicle (HbV) administration would reduce cerebral ischaemia-reperfusion injury without causing neuropathy. Three experiments were conducted. First, rats were exposed to CO inhalation to create a CO-poisoning group, and they were sacrificed on 0, 7, 14, and 21 days after CO exposure. Histopathologically, hippocampal damage was prominent at 14 days. Second, the rats were administered with CO-HbV equivalent to 50 or 25% of circulating blood volume (CO-HbV50 or CO-HbV25 group). Rats were sacrificed 14 days after administration. Third, rats put into haemorrhagic shock by 50% of circulating blood withdrawal were resuscitated using saline, autologous blood, and CO-HbV. They were sacrificed 14 days after resuscitation. Hippocampal damage assessment clarified that almost no necrotic cells were observed in the CO-HbV50 group. Necrotic cells in the CO-HbV25 group were comparable to those found for the control group. In rats resuscitated from haemorrhagic shock, the hippocampal damage in the group using CO-HbV was the mildest. Administration of CO-HbV did not lead to marked hippocampal damage. Furthermore, CO-HbV was effective at preventing cerebral ischaemia-reperfusion injury after haemorrhagic shock.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":" ","pages":"1-9"},"PeriodicalIF":5.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39863122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expression of Concern.","authors":"","doi":"10.1080/21691401.2022.2103237","DOIUrl":"https://doi.org/10.1080/21691401.2022.2103237","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":" ","pages":"220"},"PeriodicalIF":5.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40565713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rawan Alswailem, Fulwah Yahya Alqahtani, Fadilah Sfouq Aleanizy, Bahauddeen M Alrfaei, Mohammad Badran, Qamraa Hamad Alqahtani, Hosam Gharib Abdelhady, Ibrahim Alsarra
{"title":"MicroRNA-219 loaded chitosan nanoparticles for treatment of glioblastoma.","authors":"Rawan Alswailem, Fulwah Yahya Alqahtani, Fadilah Sfouq Aleanizy, Bahauddeen M Alrfaei, Mohammad Badran, Qamraa Hamad Alqahtani, Hosam Gharib Abdelhady, Ibrahim Alsarra","doi":"10.1080/21691401.2022.2092123","DOIUrl":"https://doi.org/10.1080/21691401.2022.2092123","url":null,"abstract":"<p><p>Recent evidence has implicated microRNA-219 (miR-219) in regulation of gene contributed in glioblastoma (GBM) pathogenesis. This study aimed to prepare miR-219 in chitosan (CS) nanoparticles (NPs), characterize and investigate their efficacy on human GBM cell line (U87 MG). NPs were prepared using ionic gelation method. The influence of process parameters on physicochemical characteristics of NPs was investigated. Apoptotic effect of miR-219 was examined on U87 MG cells. Formulated NPs showed particle size of 109 ± 2.18 nm, with poly dispersity index equal to 0.2 ± 0.05, and zeta potential of +20.5 ± 0.7 mV. Entrapment efficiency of miR-219 in loaded NP has reached 95%. The <i>in vitro</i> release study demonstrated sustained release pattern of miR-219 from CS-NPs. Gel retardation assay has confirmed the integrity of miR-219 after production process. The fabricated NPs reduced the survival of U87 MG cells to 78% after 24 h of post-transfection, and into 67.5% after 48 h. However, fibroblasts were not affected by the NPs, revealing their specificity for GBM cells. Given the tumour suppressing function of miR-219, and advantage of CS-NPs for gene delivery to the central nervous system, the presented NPs have a great potential for treatment of GBM.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":" ","pages":"198-207"},"PeriodicalIF":5.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40405679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}