Sajeev Kumar Babasahib, Roaddy Well Born, N. M. Raghavendra
{"title":"Trans ethosomal hybrid composites of naproxen-sulfapyridine in hydrogel carrier: anti-inflammatory response in complete Freund’s adjuvant induced arthritis rats","authors":"Sajeev Kumar Babasahib, Roaddy Well Born, N. M. Raghavendra","doi":"10.1080/21691401.2022.2047712","DOIUrl":"https://doi.org/10.1080/21691401.2022.2047712","url":null,"abstract":"Abstract Current treatment for Rheumatoid arthritis (RA) utilizes Disease-modifying antirheumatic drugs, non-steroidal anti-inflammatory drugs or its combination, to decrease joint inflammation. In the present study, naproxen (NAP) and sulfapyridine (SULF) ethosomes were prepared by a thin-film hydration technique using PL90G and cholesterol, later crosslinked with carbopol®934. The ethosomes and ethosomal hydrogel were evaluated for rheological properties, physico-chemical analysis, in vitro and in vivo study. The results show, NAP and SULF ethosomes exhibited an average vesicle size between 251.1 ± 1.80–343.5 ± 3.23 nm and 269.0 ± 1.17–358.8 ± 1.22 nm, respectively, with good stability (zeta potential > 30 mV) and polydispersity index. Differential scanning calorimeter and Fourier transform infrared studies reveal no significant changes in the drug properties of ethosomes. Transmission electron microscopy analysis discloses spherical shape vesicles below 200 nm. The entrapment efficiency of NAP and SULF ethosomes was above 66%, and NAP-SULF ethosomes-hydrogel (EH) exhibited a sustained release effect (>8 h). In vivo studies on NAP-SULF EH shows significant inhibition of inflammation (84.63%), with less paw volume (0.1935 ± 0.08 ml) on induced arthritis Albino Wistar rats, (p < .01). NAP-SULF EH was stable at 25 °C ± 0.5 for 3-months. To conclude, a hybrid composite of NAP-SULF in hydrogel carrier prevents inflammation effectively, and could be novel for trans delivery of drugs in RA. Graphical Abstract","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"29 1","pages":"59 - 70"},"PeriodicalIF":5.8,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84293662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statement of Retraction.","authors":"","doi":"10.1080/21691401.2021.1899427","DOIUrl":"https://doi.org/10.1080/21691401.2021.1899427","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"49 1","pages":"287"},"PeriodicalIF":5.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21691401.2021.1899427","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25563183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expression of Concern.","authors":"","doi":"10.1080/21691401.2021.1899377","DOIUrl":"https://doi.org/10.1080/21691401.2021.1899377","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"49 1","pages":"280"},"PeriodicalIF":5.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21691401.2021.1899377","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25563737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expression of Concern.","authors":"","doi":"10.1080/21691401.2021.1899383","DOIUrl":"https://doi.org/10.1080/21691401.2021.1899383","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"49 1","pages":"281"},"PeriodicalIF":5.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21691401.2021.1899383","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25563751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expression of Concern.","authors":"","doi":"10.1080/21691401.2021.1899387","DOIUrl":"https://doi.org/10.1080/21691401.2021.1899387","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"49 1","pages":"268"},"PeriodicalIF":5.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21691401.2021.1899387","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25576058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Beyza Dönmüş, Sinan Ünal, Fatma Ceren Kirmizitaş, Nelisa Türkoğlu Laçin
{"title":"Virus-associated ribozymes and nano carriers against COVID-19.","authors":"Beyza Dönmüş, Sinan Ünal, Fatma Ceren Kirmizitaş, Nelisa Türkoğlu Laçin","doi":"10.1080/21691401.2021.1890103","DOIUrl":"https://doi.org/10.1080/21691401.2021.1890103","url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoo tonic, highly pathogenic virus. The new type of coronavirus with contagious nature spread from Wuhan (China) to the whole world in a very short time and caused the new coronavirus disease (COVID-19). COVID-19 has turned into a global public health crisis due to spreading by close person-to-person contact with high transmission capacity. Thus, research about the treatment of the damages caused by the virus or prevention from infection increases everyday. Besides, there is still no approved and definitive, standardized treatment for COVID-19. However, this disaster experienced by human beings has made us realize the significance of having a system ready for use to prevent humanity from viral attacks without wasting time. As is known, nanocarriers can be targeted to the desired cells <i>in vitro</i> and <i>in vivo</i>. The nano-carrier system targeting a specific protein, containing the enzyme inhibiting the action of the virus can be developed. The system can be used by simple modifications when we encounter another virus epidemic in the future. In this review, we present a potential treatment method consisting of a nanoparticle-ribozyme conjugate, targeting ACE-2 receptors by reviewing the virus-associated ribozymes, their structures, types and working mechanisms.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"49 1","pages":"204-218"},"PeriodicalIF":5.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21691401.2021.1890103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25423377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TiO2 nanotubes regulate histone acetylation through F-actin to induce the osteogenic differentiation of BMSCs.","authors":"Yanchang Liu, Zhicheng Tong, Chen Wang, Runzhi Xia, Huiwu Li, Haoran Yu, Juehua Jing, Wendan Cheng","doi":"10.1080/21691401.2021.1910282","DOIUrl":"10.1080/21691401.2021.1910282","url":null,"abstract":"<p><p>Bone integration on the surface of titanium prosthesis is critical to the success of implant surgery. Good Bone integration at the contact interface is the basis of long-term stability. TiO2 nanotubes have become one of the most commonly used modification techniques for artificial joint prostheses and bone defect implants due to their good biocompatibility, mechanical properties and chemical stability. TiO2 nanotubes can promote F-actin polymerization in bone mesenchymal stem cells (BMSCs) and osteogenic differentiation. The possibility of F-actin as an upstream part to regulate GCN5 initiation of osteogenesis was discussed. The results of gene loss and functional acquisition assay, immunoblotting assay and fluorescence staining assay showed that TiO2 nanotubes could promote the differentiation of BMSCs into osteoblasts. The intervention of TiO2 nanotubes can make BMSCs form stronger F-actin fibre bundles, which can drive the differentiation process of osteogenesis. Our results showed that F-actin mediated nanotube-induced cell differentiation through promoting the expression of GCN5 and enhancing the function of GCN5 and GCN5 was a key regulator of the osteogenic differentiation of BMSCs induced by TiO2 nanotubes as a downstream mediated osteogenesis of F-actin, providing a novel insight into the study of osteogenic differentiation on surface of TiO2 nanotubes.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"49 1","pages":"398-406"},"PeriodicalIF":4.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38920941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edwin Coleridge Stephen Naidu, Samuel Oluwaseun Olojede, Sodiq Kolawole Lawal, Aniekan Imo Peter, Edidiong Anamso Akang, Onyemaechi Okpara Azu
{"title":"Effects of vancomycin linoleic acid nanoparticles on male reproductive indices of Sprague-Dawley rats.","authors":"Edwin Coleridge Stephen Naidu, Samuel Oluwaseun Olojede, Sodiq Kolawole Lawal, Aniekan Imo Peter, Edidiong Anamso Akang, Onyemaechi Okpara Azu","doi":"10.1080/21691401.2021.1968883","DOIUrl":"10.1080/21691401.2021.1968883","url":null,"abstract":"<p><p>The management of bacterial infections, especially trains of methicillin-resistant <i>Staphylococcus aureus</i> observe in health care settings, has markedly improved with the introduction of established drugs but using newer nano-based formulations. This study investigates the effects of vancomycin-linoleic acid nanoparticles on testicular tissue in an experimental animal model. Twenty-five adult male Sprague-Dawley rats maintained at the Animal House of the Biomedical Resources Unit were assigned to five groups namely E - solid lipid nanoparticles; F - vancomycin solid lipid nanoparticle; G - linoleic acid nanoparticle; H - vancomycin linoleic acid; and A - control. Perturbations in seminal fluid parameters showed a reduced sperm count in groups F & G which was statistically significant (<i>p</i> < .05) but motility and morphology were not significant when compared to controls (A). Reduced testosterone levels were found in groups E, F and H but were not statistically significant (<i>p</i> > .05). There was also increased luteinizing hormone (LH) and decreased in follicular stimulating hormone (FSH) levels was statistically significant (<i>p</i> < .05). Hypoplasia, tubular atrophy and shrinkage were observed in histologic sections of the treated groups with basement membrane thickening. Vancomycin solid lipid nanoparticle and its constituents SLN and LA disrupted testicular morphometry and the hormonal milieu sufficient to potentially induce altered reproductive function.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"49 1","pages":"587-595"},"PeriodicalIF":4.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39337264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Argyreia nervosa (Samudra pala)</i> leaf extract mediated silver nanoparticles and evaluation of their antioxidant, antibacterial activity, <i>in vitro</i> anticancer and apoptotic studies in KB oral cancer cell lines.","authors":"Gunashekar Kalvakunta Subramanyam, Susmila Aparna Gaddam, Venkata Subbaiah Kotakadi, Sashikiran Palithya, Josthna Penchalaneni, Varadarajulu Naidu Challagundla","doi":"10.1080/21691401.2021.1996384","DOIUrl":"https://doi.org/10.1080/21691401.2021.1996384","url":null,"abstract":"Abstract In the present investigation, green synthesis of silver nanoparticles (AgNPs) was carried out using aqueous leaf extract of Argyreia nervosa. The results of the spectral characterisation have revealed that the surface Plasmon resonance band was observed at 421 nm confirms the formation of AgNPs. The Fourier Transform Infra-red Spectroscopy result shows the reduction of silver nitrate into AgNPs by the reduction of different functional groups. Transmission Electron Microscope analysis revealed that the particles are roughly spherical and poly-disperse in shape and size, the particles are within the size range of 10–55 nm. Dynamic Light Scattering revealed that the nanoparticles were also within the range of 10–50 nm, An-AgNPs have a high negative zeta potential value of −38.9 mV. An-AgNPs showed efficient free radical scavenging activity and showed excellent antimicrobial activity. Anti-proliferative and cytotoxic effect of An-AgNPs was carried out by MTT assay against KB oral cancer cells, the IC50 value of An-AgNPs is 58.64 µg/ml. The cell's growth is arrested at the G2/M phase, so the An-AgNPs activated the Caspase 3 pathway which leads to the Apoptosis of KB oral cancer cells. So it is concluded that the green synthesised An-AgNPs have manifold functions.","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"49 1","pages":"635-650"},"PeriodicalIF":5.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39845821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}