人和羊主动脉瓣的嘌呤能外泌酶:细菌纳米纤维素支架细胞化的指标。

IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Barbara Kutryb-Zając, Ada Kawecka, Gabriela Harasim, Michał Bieńkowski, Klaudia Stawarska, Krzysztof Urbanowicz, Ryszard T Smoleński, Maciej M Kowalik, Magdalena Kołaczkowska, Piotr Siondalski
{"title":"人和羊主动脉瓣的嘌呤能外泌酶:细菌纳米纤维素支架细胞化的指标。","authors":"Barbara Kutryb-Zając, Ada Kawecka, Gabriela Harasim, Michał Bieńkowski, Klaudia Stawarska, Krzysztof Urbanowicz, Ryszard T Smoleński, Maciej M Kowalik, Magdalena Kołaczkowska, Piotr Siondalski","doi":"10.1080/21691401.2025.2502033","DOIUrl":null,"url":null,"abstract":"<p><p>Purinergic signalling pathways play a vital role in the biological functions of the aortic valve (AV) through nucleotide and adenosine-dependent receptor effects. This study focused on characterizing a side-specific purinergic cascade in human non-stenotic and stenotic AVs, ovine native AVs and a novel bacterial nanocellulose (BNC) bio-prosthesis in an ovine model. Human stenotic AVs were collected during replacement surgeries, while non-stenotic AVs came from heart transplant patients. Ovine native AVs were sourced from domestic sheep, and the BNC prosthesis was implanted in the ovine aorta for six months, with hemodynamic monitoring throughout. Biochemical assessments revealed a beneficial ecto-enzyme pattern in non-stenotic and native AVs, contrasting with a detrimental pattern in stenotic valves. The BNC prosthesis demonstrated significantly lower nucleotide conversion activities than native valves and displayed increased peripheral blood mononuclear cell adhesion on its aortic surface. These findings suggest that nucleotide-converting ecto-enzymes could serve as markers for the biological activity of AV prostheses, highlighting the need for further studies to enhance the cellularization of BNC prostheses, potentially through adenosine-releasing scaffold modifications.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"219-230"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purinergic ecto-enzymes in human and ovine aortic valves: indicators of bacterial nanocellulose scaffold cellularization.\",\"authors\":\"Barbara Kutryb-Zając, Ada Kawecka, Gabriela Harasim, Michał Bieńkowski, Klaudia Stawarska, Krzysztof Urbanowicz, Ryszard T Smoleński, Maciej M Kowalik, Magdalena Kołaczkowska, Piotr Siondalski\",\"doi\":\"10.1080/21691401.2025.2502033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purinergic signalling pathways play a vital role in the biological functions of the aortic valve (AV) through nucleotide and adenosine-dependent receptor effects. This study focused on characterizing a side-specific purinergic cascade in human non-stenotic and stenotic AVs, ovine native AVs and a novel bacterial nanocellulose (BNC) bio-prosthesis in an ovine model. Human stenotic AVs were collected during replacement surgeries, while non-stenotic AVs came from heart transplant patients. Ovine native AVs were sourced from domestic sheep, and the BNC prosthesis was implanted in the ovine aorta for six months, with hemodynamic monitoring throughout. Biochemical assessments revealed a beneficial ecto-enzyme pattern in non-stenotic and native AVs, contrasting with a detrimental pattern in stenotic valves. The BNC prosthesis demonstrated significantly lower nucleotide conversion activities than native valves and displayed increased peripheral blood mononuclear cell adhesion on its aortic surface. These findings suggest that nucleotide-converting ecto-enzymes could serve as markers for the biological activity of AV prostheses, highlighting the need for further studies to enhance the cellularization of BNC prostheses, potentially through adenosine-releasing scaffold modifications.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"53 1\",\"pages\":\"219-230\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2025.2502033\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2502033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

嘌呤能信号通路通过核苷酸和腺苷依赖受体的作用在主动脉瓣(AV)的生物学功能中发挥重要作用。本研究主要研究了人类非狭窄型和狭窄型AVs、羊原生AVs以及一种新型细菌纳米纤维素(BNC)生物假体在羊模型中的侧特异性嘌呤能级联反应。在置换手术期间收集人类狭窄性房室,而非狭窄性房室来自心脏移植患者。羊的原生AVs来源于家养羊,BNC假体植入羊主动脉6个月,全程监测血流动力学。生化评估显示非狭窄性和原生AVs中有有益的外切酶模式,而狭窄性瓣膜中有有害的外切酶模式。BNC假体的核苷酸转化活性明显低于天然瓣膜,其主动脉表面的外周血单个核细胞黏附性增加。这些发现表明,核苷酸转换外酶可以作为AV假体生物活性的标记物,强调需要进一步研究通过腺苷释放支架修饰来增强BNC假体的细胞化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Purinergic ecto-enzymes in human and ovine aortic valves: indicators of bacterial nanocellulose scaffold cellularization.

Purinergic signalling pathways play a vital role in the biological functions of the aortic valve (AV) through nucleotide and adenosine-dependent receptor effects. This study focused on characterizing a side-specific purinergic cascade in human non-stenotic and stenotic AVs, ovine native AVs and a novel bacterial nanocellulose (BNC) bio-prosthesis in an ovine model. Human stenotic AVs were collected during replacement surgeries, while non-stenotic AVs came from heart transplant patients. Ovine native AVs were sourced from domestic sheep, and the BNC prosthesis was implanted in the ovine aorta for six months, with hemodynamic monitoring throughout. Biochemical assessments revealed a beneficial ecto-enzyme pattern in non-stenotic and native AVs, contrasting with a detrimental pattern in stenotic valves. The BNC prosthesis demonstrated significantly lower nucleotide conversion activities than native valves and displayed increased peripheral blood mononuclear cell adhesion on its aortic surface. These findings suggest that nucleotide-converting ecto-enzymes could serve as markers for the biological activity of AV prostheses, highlighting the need for further studies to enhance the cellularization of BNC prostheses, potentially through adenosine-releasing scaffold modifications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Cells, Nanomedicine, and Biotechnology
Artificial Cells, Nanomedicine, and Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
10.90
自引率
0.00%
发文量
48
审稿时长
20 weeks
期刊介绍: Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信