可注射热敏甲基纤维素-羧甲基壳聚糖水凝胶用于软骨再生中人羊水间充质间质细胞球体的递送。

IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Carolina Coli Zuliani, Jéssica Bruna da Cunha, Rodolpho Fagundes Correa, Eronildo Alves Pinto Júnior, Marcos Akira d'Ávila, Ângela Maria Moraes, Ibsen Bellini Coimbra
{"title":"可注射热敏甲基纤维素-羧甲基壳聚糖水凝胶用于软骨再生中人羊水间充质间质细胞球体的递送。","authors":"Carolina Coli Zuliani, Jéssica Bruna da Cunha, Rodolpho Fagundes Correa, Eronildo Alves Pinto Júnior, Marcos Akira d'Ávila, Ângela Maria Moraes, Ibsen Bellini Coimbra","doi":"10.1080/21691401.2025.2566710","DOIUrl":null,"url":null,"abstract":"<p><p>Cartilage injuries caused by trauma or degenerative conditions such as osteoarthritis have limited intrinsic healing capacity and often require invasive interventions. This study proposes a minimally invasive therapeutic strategy using spheroids of human amniotic fluid-derived mesenchymal stromal cells (AF-MSCs) embedded in a thermosensitive hydrogel composed of 10% (w/v) methylcellulose and 1% (w/v) carboxymethyl chitosan (M10C1). AF-MSCs spheroids, generated in 3D culture under TGF-β3 stimulation, exhibited high viability and robust extracellular matrix production, including type II collagen and aggrecan. Rheological characterisation confirmed that M10C1 displays shear-thinning behaviour and gelation near physiological temperatures (∼30 °C), making it suitable for injection and 3D bioprinting. Importantly, confocal microscopy and fusion assays demonstrated that the hydrogel preserved spheroid bioassembly and viability. Co-culture with human cartilage explants further showed that M10C1 promoted spheroid adhesion without hindering integration into native tissue. These findings highlight the potential of this AF-MSCs spheroid-hydrogel system as an injectable, biocompatible platform for cartilage repair, with promising applications in regenerative medicine and bioengineered tissue therapies.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"453-467"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Injectable thermosensitive methylcellulose-carboxymethyl chitosan hydrogel for the delivery of human amniotic fluid mesenchymal stromal cell spheroids in cartilage regeneration.\",\"authors\":\"Carolina Coli Zuliani, Jéssica Bruna da Cunha, Rodolpho Fagundes Correa, Eronildo Alves Pinto Júnior, Marcos Akira d'Ávila, Ângela Maria Moraes, Ibsen Bellini Coimbra\",\"doi\":\"10.1080/21691401.2025.2566710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cartilage injuries caused by trauma or degenerative conditions such as osteoarthritis have limited intrinsic healing capacity and often require invasive interventions. This study proposes a minimally invasive therapeutic strategy using spheroids of human amniotic fluid-derived mesenchymal stromal cells (AF-MSCs) embedded in a thermosensitive hydrogel composed of 10% (w/v) methylcellulose and 1% (w/v) carboxymethyl chitosan (M10C1). AF-MSCs spheroids, generated in 3D culture under TGF-β3 stimulation, exhibited high viability and robust extracellular matrix production, including type II collagen and aggrecan. Rheological characterisation confirmed that M10C1 displays shear-thinning behaviour and gelation near physiological temperatures (∼30 °C), making it suitable for injection and 3D bioprinting. Importantly, confocal microscopy and fusion assays demonstrated that the hydrogel preserved spheroid bioassembly and viability. Co-culture with human cartilage explants further showed that M10C1 promoted spheroid adhesion without hindering integration into native tissue. These findings highlight the potential of this AF-MSCs spheroid-hydrogel system as an injectable, biocompatible platform for cartilage repair, with promising applications in regenerative medicine and bioengineered tissue therapies.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"53 1\",\"pages\":\"453-467\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2025.2566710\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2566710","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由创伤或退行性疾病(如骨关节炎)引起的软骨损伤具有有限的内在愈合能力,通常需要侵入性干预。本研究提出了一种微创治疗策略,将人羊水来源的间充质间质细胞(afmscs)球体包埋在由10% (w/v)甲基纤维素和1% (w/v)羧甲基壳聚糖(M10C1)组成的热敏水凝胶中。TGF-β3刺激下3D培养生成的AF-MSCs球体具有高活力和强大的细胞外基质生成,包括II型胶原和聚集蛋白。流变学表征证实,M10C1在生理温度(~ 30°C)附近显示剪切变薄行为和凝胶化,使其适合注射和3D生物打印。重要的是,共聚焦显微镜和融合实验表明,水凝胶保留了球体的生物组装和活力。与人软骨外植体共培养进一步表明,M10C1促进了球状体的粘附,而不阻碍其与原生组织的融合。这些发现突出了AF-MSCs球形水凝胶系统作为一种可注射的、生物相容性的软骨修复平台的潜力,在再生医学和生物工程组织治疗中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Injectable thermosensitive methylcellulose-carboxymethyl chitosan hydrogel for the delivery of human amniotic fluid mesenchymal stromal cell spheroids in cartilage regeneration.

Cartilage injuries caused by trauma or degenerative conditions such as osteoarthritis have limited intrinsic healing capacity and often require invasive interventions. This study proposes a minimally invasive therapeutic strategy using spheroids of human amniotic fluid-derived mesenchymal stromal cells (AF-MSCs) embedded in a thermosensitive hydrogel composed of 10% (w/v) methylcellulose and 1% (w/v) carboxymethyl chitosan (M10C1). AF-MSCs spheroids, generated in 3D culture under TGF-β3 stimulation, exhibited high viability and robust extracellular matrix production, including type II collagen and aggrecan. Rheological characterisation confirmed that M10C1 displays shear-thinning behaviour and gelation near physiological temperatures (∼30 °C), making it suitable for injection and 3D bioprinting. Importantly, confocal microscopy and fusion assays demonstrated that the hydrogel preserved spheroid bioassembly and viability. Co-culture with human cartilage explants further showed that M10C1 promoted spheroid adhesion without hindering integration into native tissue. These findings highlight the potential of this AF-MSCs spheroid-hydrogel system as an injectable, biocompatible platform for cartilage repair, with promising applications in regenerative medicine and bioengineered tissue therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Cells, Nanomedicine, and Biotechnology
Artificial Cells, Nanomedicine, and Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
10.90
自引率
0.00%
发文量
48
审稿时长
20 weeks
期刊介绍: Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信