Marta Clerici, Maria Camilla Ciardulli, Erwin Pavel Lamparelli, Joseph Lovecchio, Emanuele Giordano, Tina P Dale, Nicholas R Forsyth, Nicola Maffulli, Giovanna Della Porta
{"title":"Human tendon stem/progenitor cell-derived extracellular vesicle production promoted by dynamic culture.","authors":"Marta Clerici, Maria Camilla Ciardulli, Erwin Pavel Lamparelli, Joseph Lovecchio, Emanuele Giordano, Tina P Dale, Nicholas R Forsyth, Nicola Maffulli, Giovanna Della Porta","doi":"10.1080/21691401.2025.2475099","DOIUrl":null,"url":null,"abstract":"<p><p>Tendon injuries significantly impact quality of life, prompting the exploration of innovative solutions beyond conventional surgery. Extracellular Vesicles (EVs) have emerged as a promising strategy to enhance tendon regeneration. In this study, human Tendon Stem/Progenitor Cells (TSPCs) were isolated from surgical biopsies and cultured in a Growth-Differentiation Factor-5-supplemented medium to promote tenogenic differentiation under static and dynamic conditions using a custom-made perfusion bioreactor. Once at 80% confluence, cells were transitioned to a serum-free medium for conditioned media collection. Ultracentrifugation revealed the presence of vesicles with a 10<sup>6</sup> particles/mL concentration and sub-200nm diameter size. Dynamic culture yielded a 3-fold increase in EV protein content compared to static culture, as confirmed by Western-blot analysis. Differences in surface marker expression were also shown by flow cytometric analysis. Data suggest that we efficiently developed a protocol for extracting EVs from human TSPCs, particularly under dynamic conditions. This approach enhances EV protein content, offering potential therapeutic benefits for tendon regeneration. However, further research is needed to fully understand the role of EVs in tendon regeneration.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"1-16"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2475099","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tendon injuries significantly impact quality of life, prompting the exploration of innovative solutions beyond conventional surgery. Extracellular Vesicles (EVs) have emerged as a promising strategy to enhance tendon regeneration. In this study, human Tendon Stem/Progenitor Cells (TSPCs) were isolated from surgical biopsies and cultured in a Growth-Differentiation Factor-5-supplemented medium to promote tenogenic differentiation under static and dynamic conditions using a custom-made perfusion bioreactor. Once at 80% confluence, cells were transitioned to a serum-free medium for conditioned media collection. Ultracentrifugation revealed the presence of vesicles with a 106 particles/mL concentration and sub-200nm diameter size. Dynamic culture yielded a 3-fold increase in EV protein content compared to static culture, as confirmed by Western-blot analysis. Differences in surface marker expression were also shown by flow cytometric analysis. Data suggest that we efficiently developed a protocol for extracting EVs from human TSPCs, particularly under dynamic conditions. This approach enhances EV protein content, offering potential therapeutic benefits for tendon regeneration. However, further research is needed to fully understand the role of EVs in tendon regeneration.
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.