Cell stem cell最新文献

筛选
英文 中文
Transgene-free generation of mouse post-gastrulation whole embryo models solely from naive ESCs and iPSCs 用未成熟的ESCs和iPSCs制备小鼠原肠胚后全胚胎模型
IF 23.9 1区 医学
Cell stem cell Pub Date : 2025-08-07 DOI: 10.1016/j.stem.2025.07.005
Alperen Yilmaz, Gulben Gurhan, Mehmet-Yunus Comar, Sergey Viukov, Inbal Serfaty, Mert Gayretli, Sergey Golenchenko, Dmitry Lokshtanov, Shahd Ashouokhi, Angel Polanco, Idan Berlad, Tae-Won Ha, Alejandro Aguilera-Castrejon, Shadi Tarazi, Marina Cohen, Nir Livnat, Komal Kumar, Hisham Cholakkal, Nathan Levy, Nir Yosef, Jacob H. Hanna
{"title":"Transgene-free generation of mouse post-gastrulation whole embryo models solely from naive ESCs and iPSCs","authors":"Alperen Yilmaz, Gulben Gurhan, Mehmet-Yunus Comar, Sergey Viukov, Inbal Serfaty, Mert Gayretli, Sergey Golenchenko, Dmitry Lokshtanov, Shahd Ashouokhi, Angel Polanco, Idan Berlad, Tae-Won Ha, Alejandro Aguilera-Castrejon, Shadi Tarazi, Marina Cohen, Nir Livnat, Komal Kumar, Hisham Cholakkal, Nathan Levy, Nir Yosef, Jacob H. Hanna","doi":"10.1016/j.stem.2025.07.005","DOIUrl":"https://doi.org/10.1016/j.stem.2025.07.005","url":null,"abstract":"The generation of post-gastrulation stem cell-derived mouse embryo models (SEMs) exclusively from naive embryonic stem cells (nESCs) has underscored their ability to give rise to embryonic and extra-embryonic lineages. However, existing protocols for mouse SEMs rely on the separate induction of extra-embryonic lineages and on ectopic expression of transcription factors to induce nESC differentiation into trophectoderm (TE) or primitive endoderm (PrE). Here, we demonstrate that mouse nESCs and naive induced pluripotent stem cells (niPSCs) can be simultaneously co-induced, via signaling pathway modulation, to generate PrE and TE extra-embryonic cells that self-organize into embryonic day (E) 8.5–E8.75 transgene-free (TF) SEMs. We also devised an alternative condition (AC) naive media that <em>in vitro</em> stabilizes TF-SEM-competent OCT4+/NANOG+ nESC colonies that co-express antagonistic CDX2 and/or GATA6 extra-embryonic fate master regulators and self-renew while remaining poised for TE and PrE differentiation, respectively. These findings improve mouse SEM strategies and shed light on amplifying an inherent and dormant extra-embryonic plasticity of mouse naive pluripotent cells <em>in vitro</em>.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"9 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144792325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plot twist: TET2 clones save the brain 剧情转折:TET2克隆人拯救了大脑
IF 23.9 1区 医学
Cell stem cell Pub Date : 2025-08-07 DOI: 10.1016/j.stem.2025.07.001
Maria A. Telpoukhovskaia, Jennifer J. Trowbridge
{"title":"Plot twist: TET2 clones save the brain","authors":"Maria A. Telpoukhovskaia, Jennifer J. Trowbridge","doi":"10.1016/j.stem.2025.07.001","DOIUrl":"https://doi.org/10.1016/j.stem.2025.07.001","url":null,"abstract":"While clonal hematopoiesis (CH) is associated with protection from Alzheimer’s disease (AD), a limited understanding of the mechanisms by which this occurs has been a barrier to therapeutic intervention. In a new study, Matatall et al.<span><span><sup>1</sup></span></span> discover protective mechanisms by which <em>TET2</em>-mutant, but not <em>DNMT3A</em>-mutant, CH impacts dementia pathology and cognition.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"1 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144792326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vascular organoids get a speed boost for regenerative repair 类血管器官的再生修复速度加快
IF 23.9 1区 医学
Cell stem cell Pub Date : 2025-08-07 DOI: 10.1016/j.stem.2025.07.002
Danielle Klinger, Jeffrey A. Naftaly, Kristy Red-Horse
{"title":"Vascular organoids get a speed boost for regenerative repair","authors":"Danielle Klinger, Jeffrey A. Naftaly, Kristy Red-Horse","doi":"10.1016/j.stem.2025.07.002","DOIUrl":"https://doi.org/10.1016/j.stem.2025.07.002","url":null,"abstract":"Gong et al. present a transcription factor-guided 3D differentiation that rapidly generates vascular organoids from human iPSCs, enhancing engraftment and revascularization of ischemic limbs and transplanted pancreatic islets in mouse models.<span><span><sup>1</sup></span></span> This approach establishes a scalable platform for generating functional vasculature, supporting both disease modeling and regenerative therapy development.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"6 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144792324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revolutionizing islet transplantation with a preconditioning boost for beta cell survival 革命性的胰岛移植与预处理促进β细胞存活
IF 23.9 1区 医学
Cell stem cell Pub Date : 2025-08-07 DOI: 10.1016/j.stem.2025.06.011
Kewen Hu, Yajie Chen, Zhen Zhang
{"title":"Revolutionizing islet transplantation with a preconditioning boost for beta cell survival","authors":"Kewen Hu, Yajie Chen, Zhen Zhang","doi":"10.1016/j.stem.2025.06.011","DOIUrl":"https://doi.org/10.1016/j.stem.2025.06.011","url":null,"abstract":"The poor survival of islets post-transplantation remains a significant challenge for type 1 diabetes mellitus (T1DM) therapy. Vandana et al.<span><span><sup>1</sup></span></span> develop ChemPerturb-seq, which is integrated with <em>in vivo</em> barcoded screening to identify small molecule cocktails that enhance human beta cell and islet survival after transplantation, offering promising strategies for T1DM.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"52 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144792336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TET2-mutant myeloid cells mitigate Alzheimer’s disease progression via CNS infiltration and enhanced phagocytosis in mice tet2突变骨髓细胞通过中枢神经系统浸润和增强吞噬作用减轻小鼠阿尔茨海默病的进展
IF 23.9 1区 医学
Cell stem cell Pub Date : 2025-08-01 DOI: 10.1016/j.stem.2025.07.011
Katie A. Matatall, Trisha K. Wathan, Minh Nguyen, Hu Chen, Alexandra McDonald, Guantong Qi, Julia A. Belk, Marcus A. Florez, Duy T. Le, Temitope Olarinde, Caitlyn Vlasschaert, Marco M. Buttigieg, Chih-wei Fan, Saul Carcamo, Ruoqiong Cao, Daniel E. Kennedy, Arushana A. Maknojia, Apoorva Thatavarty, Josaura V. Fernandez Sanchez, Hind Bouzid, Katherine Y. King
{"title":"TET2-mutant myeloid cells mitigate Alzheimer’s disease progression via CNS infiltration and enhanced phagocytosis in mice","authors":"Katie A. Matatall, Trisha K. Wathan, Minh Nguyen, Hu Chen, Alexandra McDonald, Guantong Qi, Julia A. Belk, Marcus A. Florez, Duy T. Le, Temitope Olarinde, Caitlyn Vlasschaert, Marco M. Buttigieg, Chih-wei Fan, Saul Carcamo, Ruoqiong Cao, Daniel E. Kennedy, Arushana A. Maknojia, Apoorva Thatavarty, Josaura V. Fernandez Sanchez, Hind Bouzid, Katherine Y. King","doi":"10.1016/j.stem.2025.07.011","DOIUrl":"https://doi.org/10.1016/j.stem.2025.07.011","url":null,"abstract":"No Abstract","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"20 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144756629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative single-cell lineage tracing identifies distinct adipocyte precursor dynamics in skin and inguinal fat 比较单细胞谱系追踪识别皮肤和腹股沟脂肪中不同的脂肪细胞前体动力学
IF 23.9 1区 医学
Cell stem cell Pub Date : 2025-07-30 DOI: 10.1016/j.stem.2025.07.004
Guillermo C. Rivera-Gonzalez, Emily G. Butka, Carolynn E. Gonzalez, Rachel L. Mintz, Sarah S. Kleb, Violet Josephson, Wenjun Kong, Kunal Jindal, Kenji Kamimoto, Brett A. Shook, Matthew S. Rodeheffer, Samantha A. Morris
{"title":"Comparative single-cell lineage tracing identifies distinct adipocyte precursor dynamics in skin and inguinal fat","authors":"Guillermo C. Rivera-Gonzalez, Emily G. Butka, Carolynn E. Gonzalez, Rachel L. Mintz, Sarah S. Kleb, Violet Josephson, Wenjun Kong, Kunal Jindal, Kenji Kamimoto, Brett A. Shook, Matthew S. Rodeheffer, Samantha A. Morris","doi":"10.1016/j.stem.2025.07.004","DOIUrl":"https://doi.org/10.1016/j.stem.2025.07.004","url":null,"abstract":"White adipose tissue supports essential physiological functions through adipocyte precursor cells (APCs), comprising progenitors and preadipocytes, which generate mature adipocytes during depot expansion. Using single-cell RNA sequencing-based lineage tracing, we characterize APCs in skin adipose tissue—a depot uniquely capable of rapid adipogenesis compared with other sites, such as inguinal adipose. We identify a previously uncharacterized population of immature preadipocytes and reveal distinct differentiation potentials among APCs. Contrary to traditional stepwise differentiation models, progenitors predominantly generate committed preadipocytes, whereas preexisting preadipocytes accumulate in immature states with divergent potential. Leveraging this refined APC hierarchy, we uncover Sox9 as a crucial regulator of progenitor proliferation and adipogenic differentiation. Cross-depot transplantation further demonstrates how intrinsic and extrinsic factors differentially regulate skin progenitor behavior, highlighting distinct adipogenic dynamics between skin and inguinal depots. Together, these insights redefine the cellular hierarchy and molecular mechanisms underpinning rapid adipogenesis in skin adipose tissue.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"27 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144737519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical reprogramming of human blood cells to pluripotent stem cells 人类血液细胞化学重编程为多能干细胞
IF 23.9 1区 医学
Cell stem cell Pub Date : 2025-07-30 DOI: 10.1016/j.stem.2025.07.003
Fangqi Peng, Yanglu Wang, Lin Cheng, Ruyi Cai, Xiaodi Fu, Zhihan Yang, Ruoqi Cheng, Weizhen Zeng, Yingshuai Dong, Jingxiao Cao, Jingping Mao, Jingran Zeng, Tianxing Liu, Guanxian Chen, Qi Lei, Lipeng Wang, Lulu Liu, Shicheng Sun, Cheng Li, Rong Mu, Hongkui Deng
{"title":"Chemical reprogramming of human blood cells to pluripotent stem cells","authors":"Fangqi Peng, Yanglu Wang, Lin Cheng, Ruyi Cai, Xiaodi Fu, Zhihan Yang, Ruoqi Cheng, Weizhen Zeng, Yingshuai Dong, Jingxiao Cao, Jingping Mao, Jingran Zeng, Tianxing Liu, Guanxian Chen, Qi Lei, Lipeng Wang, Lulu Liu, Shicheng Sun, Cheng Li, Rong Mu, Hongkui Deng","doi":"10.1016/j.stem.2025.07.003","DOIUrl":"https://doi.org/10.1016/j.stem.2025.07.003","url":null,"abstract":"Chemical reprogramming offers a fundamentally innovative approach for generating human chemically induced pluripotent stem (hCiPS) cells using small molecules. Our recent studies showed that this approach was highly efficient in reprogramming human fibroblasts to hCiPS cells. However, generating hCiPS cells from human blood cells, which are the most accessible and convenient source for reprogramming, remains a challenge. In this study, we established a robust method that successfully generated hCiPS cells from both cord blood and adult peripheral blood cells. This method achieved efficient reprogramming with both fresh and cryopreserved blood cells across different donors. Notably, this method also efficiently generated an average of over 100 hCiPS colonies from just a single drop of fingerstick blood. These results highlight the advantages of chemical reprogramming for generating hCiPS cells from a blood source and represent a next-generation platform for efficient, scalable, and convenient stem cell production with broad applications in regenerative medicine.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"300 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144737520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-canonical functions of DNMT3A in hematopoietic stem cells regulate telomerase activity and genome integrity DNMT3A在造血干细胞中的非规范功能调节端粒酶活性和基因组完整性
IF 23.9 1区 医学
Cell stem cell Pub Date : 2025-07-17 DOI: 10.1016/j.stem.2025.06.010
Infencia Xavier Raj, Won Kyun Koh, Jessica Harrison, Christine R. Zhang, Barbara Soares, Roberta Amato, Aishwarya Krishnan, David R. O’Leary, Hassan Bjeije, Tyler M. Parsons, Wentao Han, Andrew L. Young, Ting Wang, Luis F.Z. Batista, Grant A. Challen
{"title":"Non-canonical functions of DNMT3A in hematopoietic stem cells regulate telomerase activity and genome integrity","authors":"Infencia Xavier Raj, Won Kyun Koh, Jessica Harrison, Christine R. Zhang, Barbara Soares, Roberta Amato, Aishwarya Krishnan, David R. O’Leary, Hassan Bjeije, Tyler M. Parsons, Wentao Han, Andrew L. Young, Ting Wang, Luis F.Z. Batista, Grant A. Challen","doi":"10.1016/j.stem.2025.06.010","DOIUrl":"https://doi.org/10.1016/j.stem.2025.06.010","url":null,"abstract":"DNMT3A is a critical regulator of hematopoietic stem cell (HSC) fate decisions and the most recurrently mutated gene in human clonal hematopoiesis (CH). DNMT3A is described as a DNA methyltransferase enzyme, but cells with DNMT3A loss of function show minor changes in DNA methylation that do not correlate with altered gene expression. To explore the possibility that Dnmt3a has DNA-methylation-independent functions in HSCs, we created an allelic series of mice with varying levels of DNA-methylation-impaired Dnmt3a. Clonal expansion of <em>Dnmt3a</em>-deficient HSCs was rescued by Dnmt3a proteins lacking DNA methylation capacity, suggesting that Dnmt3a has important non-canonical functions in HSCs. <em>Dnmt3a</em>-null HSCs can be transplanted indefinitely, implying the ability to circumvent mechanisms that limit the replicative lifespan of HSCs, such as telomere shortening. <em>Dnmt3a</em>-null HSCs show increased telomerase activity and sustain telomere length over serial transplantation, revealing a previously unidentified role for <em>DNMT3A</em> mutations in regulating HSC longevity that is unrelated to DNA methylation function.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"5 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144645285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial ADP-heptose triggers stem cell regeneration in the intestinal epithelium following injury 细菌adp -庚糖触发肠上皮损伤后干细胞再生
IF 23.9 1区 医学
Cell stem cell Pub Date : 2025-07-11 DOI: 10.1016/j.stem.2025.06.009
Shawn Goyal, Cynthia X. Guo, Ojas Singh, Adrienne Ranger, Caitlin F. Harrigan, Justin Meade, Alexander Luchak, Derek K. Tsang, Herbert Y. Gaisano, Nan Gao, Scott A. Yuzwa, Jeffrey L. Wrana, Dana J. Philpott, Scott D. Gray-Owen, Stephen E. Girardin
{"title":"Bacterial ADP-heptose triggers stem cell regeneration in the intestinal epithelium following injury","authors":"Shawn Goyal, Cynthia X. Guo, Ojas Singh, Adrienne Ranger, Caitlin F. Harrigan, Justin Meade, Alexander Luchak, Derek K. Tsang, Herbert Y. Gaisano, Nan Gao, Scott A. Yuzwa, Jeffrey L. Wrana, Dana J. Philpott, Scott D. Gray-Owen, Stephen E. Girardin","doi":"10.1016/j.stem.2025.06.009","DOIUrl":"https://doi.org/10.1016/j.stem.2025.06.009","url":null,"abstract":"ADP-heptose (ADP-Hep), a metabolite produced by gram-negative bacteria, is detected in the host cytosol by the kinase ALPK1, which engages TIFA-dependent innate immune responses. However, the function of ALPK1-TIFA signaling in primary cells and in physiological settings remains poorly understood. Here, we showed that, in the intestinal epithelium, ALPK1 and TIFA were mainly expressed by the intestinal stem cell (ISC) pool, where they controlled the replacement of homeostatic ISCs by new revival stem cells (revSCs) following injury. Mechanistically, ADP-Hep triggered pro-inflammatory nuclear factor κB (NF-κB) signaling and tumor necrosis factor (TNF)-dependent ISC apoptosis, which initiated a transforming growth factor β (TGF-β)- and YAP-dependent revSC program. Single-cell transcriptomics and lineage-tracing experiments identified Paneth cells as a cell of origin for revSC induction in response to ADP-Hep. <em>In vivo</em>, revSC emergence following irradiation or dextran-sodium-sulfate-induced injury was blunted in <em>Tifa</em><sup>−/−</sup> mice. Together, our work reveals that ALPK1-TIFA signaling contributes to ISC turnover in response to bacterial detection in the intestine.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"21 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144602853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From symbiote to bad neighbor: The intestinal microbiome as a driver of CHIP 从共生体到坏邻居:肠道微生物组作为CHIP的驱动因素
IF 23.9 1区 医学
Cell stem cell Pub Date : 2025-07-03 DOI: 10.1016/j.stem.2025.06.003
Courtney M. Cowan, Eric M. Pietras
{"title":"From symbiote to bad neighbor: The intestinal microbiome as a driver of CHIP","authors":"Courtney M. Cowan, Eric M. Pietras","doi":"10.1016/j.stem.2025.06.003","DOIUrl":"https://doi.org/10.1016/j.stem.2025.06.003","url":null,"abstract":"Hematopoietic stem cells (HSCs) with mutations that can cause clonal hematopoiesis of indeterminate potential (CHIP) accumulate during aging. Agarwal et al.<span><span><sup>1</sup></span></span> demonstrate in <em>Nature</em> that intestinal barrier permeability increases with age and enables the microbial metabolite ADP-heptose to reach the bone marrow, thus driving the expansion of DNMT3A-mutant HSCs.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"5 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144547569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信