Cell stem cellPub Date : 2024-05-02DOI: 10.1016/j.stem.2024.03.014
Lin Shan, Ling-Ling Chen
{"title":"Unveiling the mystery of nuclear RNA homeostasis","authors":"Lin Shan, Ling-Ling Chen","doi":"10.1016/j.stem.2024.03.014","DOIUrl":"https://doi.org/10.1016/j.stem.2024.03.014","url":null,"abstract":"<p>How nuclear RNA homeostasis impacts cellular functions remains elusive. In this issue of <em>Cell Stem Cell</em>, Han et al.<span><sup>1</sup></span> utilized a controllable protein degradation system targeting EXOSC2 to perturb RNA homeostasis in mouse pluripotent embryonic stem cells, revealing its vital role in orchestrating crucial nuclear events for cellular fitness.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"11 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remodeling ceramide homeostasis promotes functional maturation of human pluripotent stem cell-derived β cells","authors":"Huijuan Hua, Yaqi Wang, Xiaofeng Wang, Shusen Wang, Yunlu Zhou, Yinan Liu, Zhen Liang, Huixia Ren, Sufang Lu, Shuangshuang Wu, Yong Jiang, Yue Pu, Xiang Zheng, Chao Tang, Zhongyang Shen, Cheng Li, Yuanyuan Du, Hongkui Deng","doi":"10.1016/j.stem.2024.04.010","DOIUrl":"https://doi.org/10.1016/j.stem.2024.04.010","url":null,"abstract":"<p>Human pluripotent stem cell-derived β cells (hPSC-β cells) show the potential to restore euglycemia. However, the immature functionality of hPSC-β cells has limited their efficacy in application. Here, by deciphering the continuous maturation process of hPSC-β cells post transplantation via single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we show that functional maturation of hPSC-β cells is an orderly multistep process during which cells sequentially undergo metabolic adaption, removal of negative regulators of cell function, and establishment of a more specialized transcriptome and epigenome. Importantly, remodeling lipid metabolism, especially downregulating the metabolic activity of ceramides, the central hub of sphingolipid metabolism, is critical for β cell maturation. Limiting intracellular accumulation of ceramides in hPSC-β cells remarkably enhanced their function, as indicated by improvements in insulin processing and glucose-stimulated insulin secretion. In summary, our findings provide insights into the maturation of human pancreatic β cells and highlight the importance of ceramide homeostasis in function acquisition.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"16 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell stem cellPub Date : 2024-04-30DOI: 10.1016/j.stem.2024.04.002
Biao Huang, Zipeng Zeng, Sunghyun Kim, Connor C. Fausto, Kari Koppitch, Hui Li, Zexu Li, Xi Chen, Jinjin Guo, Chennan C. Zhang, Tianyi Ma, Pedro Medina, Megan E. Schreiber, Mateo W. Xia, Ariel C. Vonk, Tianyuan Xiang, Tadrushi Patel, Yidan Li, Riana K. Parvez, Balint Der, Zhongwei Li
{"title":"Long-term expandable mouse and human-induced nephron progenitor cells enable kidney organoid maturation and modeling of plasticity and disease","authors":"Biao Huang, Zipeng Zeng, Sunghyun Kim, Connor C. Fausto, Kari Koppitch, Hui Li, Zexu Li, Xi Chen, Jinjin Guo, Chennan C. Zhang, Tianyi Ma, Pedro Medina, Megan E. Schreiber, Mateo W. Xia, Ariel C. Vonk, Tianyuan Xiang, Tadrushi Patel, Yidan Li, Riana K. Parvez, Balint Der, Zhongwei Li","doi":"10.1016/j.stem.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.stem.2024.04.002","url":null,"abstract":"<p>Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here, manipulation of p38 and YAP activity allowed for long-term clonal expansion of primary mouse and human NPCs and induced NPCs (iNPCs) from human pluripotent stem cells (hPSCs). Molecular analyses demonstrated that cultured iNPCs closely resemble primary human NPCs. iNPCs generated nephron organoids with minimal off-target cell types and enhanced maturation of podocytes relative to published human kidney organoid protocols. Surprisingly, the NPC culture medium uncovered plasticity in human podocyte programs, enabling podocyte reprogramming to an NPC-like state. Scalability and ease of genome editing facilitated genome-wide CRISPR screening in NPC culture, uncovering genes associated with kidney development and disease. Further, NPC-directed modeling of autosomal-dominant polycystic kidney disease (ADPKD) identified a small-molecule inhibitor of cystogenesis. These findings highlight a broad application for the reported iNPC platform in the study of kidney development, disease, plasticity, and regeneration.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"21 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140814446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell stem cellPub Date : 2024-04-24DOI: 10.1016/j.stem.2024.03.018
Zahir Shah, Lei Tian, Zhixin Li, Lewei Jin, Jianying Zhang, Zhenlong Li, Tasha Barr, Hejun Tang, Mingye Feng, Michael A. Caligiuri, Jianhua Yu
{"title":"Human anti-PSCA CAR macrophages possess potent antitumor activity against pancreatic cancer","authors":"Zahir Shah, Lei Tian, Zhixin Li, Lewei Jin, Jianying Zhang, Zhenlong Li, Tasha Barr, Hejun Tang, Mingye Feng, Michael A. Caligiuri, Jianhua Yu","doi":"10.1016/j.stem.2024.03.018","DOIUrl":"https://doi.org/10.1016/j.stem.2024.03.018","url":null,"abstract":"<p>Due to the limitations of autologous chimeric antigen receptor (CAR)-T cells, alternative sources of cellular immunotherapy, including CAR macrophages, are emerging for solid tumors. Human induced pluripotent stem cells (iPSCs) offer an unlimited source for immune cell generation. Here, we develop human iPSC-derived CAR macrophages targeting prostate stem cell antigen (PSCA) (CAR-iMacs), which express membrane-bound interleukin (IL)-15 and truncated epidermal growth factor receptor (EGFR) for immune cell activation and a suicide switch, respectively. These allogeneic CAR-iMacs exhibit strong antitumor activity against human pancreatic solid tumors <em>in vitro</em> and <em>in vivo</em>, leading to reduced tumor burden and improved survival in a pancreatic cancer mouse model. CAR-iMacs appear safe and do not exhibit signs of cytokine release syndrome or other <em>in vivo</em> toxicities. We optimized the cryopreservation of CAR-iMac progenitors that remain functional upon thawing, providing an off-the-shelf, allogeneic cell product that can be developed into CAR-iMacs. Overall, our preclinical data strongly support the potential clinical translation of this human iPSC-derived platform for solid tumors, including pancreatic cancer.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"122 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140642876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell stem cellPub Date : 2024-04-19DOI: 10.1016/j.stem.2024.03.017
Claire L. Burgess, Jessie Huang, Pushpinder S. Bawa, Konstantinos-Dionysios Alysandratos, Kasey Minakin, Lauren J. Ayers, Michael P. Morley, Apoorva Babu, Carlos Villacorta-Martin, Maria Yampolskaya, Anne Hinds, Bibek R. Thapa, Feiya Wang, Adeline Matschulat, Pankaj Mehta, Edward E. Morrisey, Xaralabos Varelas, Darrell N. Kotton
{"title":"Generation of human alveolar epithelial type I cells from pluripotent stem cells","authors":"Claire L. Burgess, Jessie Huang, Pushpinder S. Bawa, Konstantinos-Dionysios Alysandratos, Kasey Minakin, Lauren J. Ayers, Michael P. Morley, Apoorva Babu, Carlos Villacorta-Martin, Maria Yampolskaya, Anne Hinds, Bibek R. Thapa, Feiya Wang, Adeline Matschulat, Pankaj Mehta, Edward E. Morrisey, Xaralabos Varelas, Darrell N. Kotton","doi":"10.1016/j.stem.2024.03.017","DOIUrl":"https://doi.org/10.1016/j.stem.2024.03.017","url":null,"abstract":"<p>Alveolar epithelial type I cells (AT1s) line the gas exchange barrier of the distal lung and have been historically challenging to isolate or maintain in cell culture. Here, we engineer a human <em>in vitro</em> AT1 model system via directed differentiation of induced pluripotent stem cells (iPSCs). We use primary adult AT1 global transcriptomes to suggest benchmarks and pathways, such as Hippo-LATS-YAP/TAZ signaling, enriched in these cells. Next, we generate iPSC-derived alveolar epithelial type II cells (AT2s) and find that nuclear YAP signaling is sufficient to promote a broad transcriptomic shift from AT2 to AT1 gene programs. The resulting cells express a molecular, morphologic, and functional phenotype reminiscent of human AT1 cells, including the capacity to form a flat epithelial barrier producing characteristic extracellular matrix molecules and secreted ligands. Our results provide an <em>in vitro</em> model of human alveolar epithelial differentiation and a potential source of human AT1s.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"13 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140622922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell stem cellPub Date : 2024-04-15DOI: 10.1016/j.stem.2024.03.013
Osama Al-Dalahmah, Matti Lam, Julie J. McInvale, Wenhui Qu, Trang Nguyen, Jeong-Yeon Mun, Sam Kwon, Nkechime Ifediora, Aayushi Mahajan, Nelson Humala, Tristan Winters, Ellen Angeles, Kelly A. Jakubiak, Rebekka Kühn, Yoon A. Kim, Maria Caterina De Rosa, Claudia A. Doege, Fahad Paryani, Xena Flowers, Athanassios Dovas, Angeliki Mela, Hong Lu, Michael A. DeTure, Jean Paul Vonsattel, Zbigniew K. Wszolek, Dennis W. Dickson, Tanja Kuhlmann, Holm Zaehres, Hans R. Schöler, Andrew A. Sproul, Markus D. Siegelin, Philip L. De Jager, James E. Goldman, Vilas Menon, Peter Canoll, Gunnar Hargus
{"title":"Osteopontin drives neuroinflammation and cell loss in MAPT-N279K frontotemporal dementia patient neurons","authors":"Osama Al-Dalahmah, Matti Lam, Julie J. McInvale, Wenhui Qu, Trang Nguyen, Jeong-Yeon Mun, Sam Kwon, Nkechime Ifediora, Aayushi Mahajan, Nelson Humala, Tristan Winters, Ellen Angeles, Kelly A. Jakubiak, Rebekka Kühn, Yoon A. Kim, Maria Caterina De Rosa, Claudia A. Doege, Fahad Paryani, Xena Flowers, Athanassios Dovas, Angeliki Mela, Hong Lu, Michael A. DeTure, Jean Paul Vonsattel, Zbigniew K. Wszolek, Dennis W. Dickson, Tanja Kuhlmann, Holm Zaehres, Hans R. Schöler, Andrew A. Sproul, Markus D. Siegelin, Philip L. De Jager, James E. Goldman, Vilas Menon, Peter Canoll, Gunnar Hargus","doi":"10.1016/j.stem.2024.03.013","DOIUrl":"https://doi.org/10.1016/j.stem.2024.03.013","url":null,"abstract":"","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"77 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140557321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell stem cellPub Date : 2024-04-11DOI: 10.1016/j.stem.2024.03.011
Hsueh-Fu Wu, Kenyi Saito-Diaz, Chia-Wei Huang, Jessica L. McAlpine, Dong Eun Seo, D. Sumner Magruder, Mohamed Ishan, Harrison C. Bergeron, William H. Delaney, Fabio R. Santori, Smita Krishnaswamy, Gerald W. Hart, Ya-Wen Chen, Robert J. Hogan, Hong-Xiang Liu, Natalia B. Ivanova, Nadja Zeltner
{"title":"Parasympathetic neurons derived from human pluripotent stem cells model human diseases and development","authors":"Hsueh-Fu Wu, Kenyi Saito-Diaz, Chia-Wei Huang, Jessica L. McAlpine, Dong Eun Seo, D. Sumner Magruder, Mohamed Ishan, Harrison C. Bergeron, William H. Delaney, Fabio R. Santori, Smita Krishnaswamy, Gerald W. Hart, Ya-Wen Chen, Robert J. Hogan, Hong-Xiang Liu, Natalia B. Ivanova, Nadja Zeltner","doi":"10.1016/j.stem.2024.03.011","DOIUrl":"https://doi.org/10.1016/j.stem.2024.03.011","url":null,"abstract":"","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"25 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140557358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}