Cell stem cell最新文献

筛选
英文 中文
Context-dependent roles of mitochondrial LONP1 in orchestrating the balance between airway progenitor versus progeny cells 线粒体 LONP1 在协调气道祖细胞与后代细胞之间的平衡中的作用与环境有关
IF 23.9 1区 医学
Cell stem cell Pub Date : 2024-08-23 DOI: 10.1016/j.stem.2024.08.001
Le Xu, Chunting Tan, Justinn Barr, Nicole Talaba, Jamie Verheyden, Ji Sun Chin, Samvel Gaboyan, Nikita Kasaraneni, Ruth M. Elgamal, Kyle J. Gaulton, Grace Lin, Kamyar Afshar, Eugene Golts, Angela Meier, Laura E. Crotty Alexander, Zea Borok, Yufeng Shen, Wendy K. Chung, David J. McCulley, Xin Sun
{"title":"Context-dependent roles of mitochondrial LONP1 in orchestrating the balance between airway progenitor versus progeny cells","authors":"Le Xu, Chunting Tan, Justinn Barr, Nicole Talaba, Jamie Verheyden, Ji Sun Chin, Samvel Gaboyan, Nikita Kasaraneni, Ruth M. Elgamal, Kyle J. Gaulton, Grace Lin, Kamyar Afshar, Eugene Golts, Angela Meier, Laura E. Crotty Alexander, Zea Borok, Yufeng Shen, Wendy K. Chung, David J. McCulley, Xin Sun","doi":"10.1016/j.stem.2024.08.001","DOIUrl":"https://doi.org/10.1016/j.stem.2024.08.001","url":null,"abstract":"<p>While all eukaryotic cells are dependent on mitochondria for function, in a complex tissue, which cell type and which cell behavior are more sensitive to mitochondrial deficiency remain unpredictable. Here, we show that in the mouse airway, compromising mitochondrial function by inactivating mitochondrial protease gene <em>Lonp1</em> led to reduced progenitor proliferation and differentiation during development, apoptosis of terminally differentiated ciliated cells and their replacement by basal progenitors and goblet cells during homeostasis, and failed airway progenitor migration into damaged alveoli following influenza infection. ATF4 and the integrated stress response (ISR) pathway are elevated and responsible for the airway phenotypes. Such context-dependent sensitivities are predicted by the selective expression of <em>Bok</em>, which is required for ISR activation. Reduced LONP1 expression is found in chronic obstructive pulmonary disease (COPD) airways with squamous metaplasia. These findings illustrate a cellular energy landscape whereby compromised mitochondrial function could favor the emergence of pathological cell types.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"42 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial serine catabolism safeguards maintenance of the hematopoietic stem cell pool in homeostasis and injury 线粒体丝氨酸分解为维持造血干细胞池的平衡和损伤提供保障
IF 23.9 1区 医学
Cell stem cell Pub Date : 2024-08-23 DOI: 10.1016/j.stem.2024.07.009
Changhong Du, Chaonan Liu, Kuan Yu, Shuzhen Zhang, Zeyu Fu, Xinliang Chen, Weinian Liao, Jun Chen, Yimin Zhang, Xinmiao Wang, Mo Chen, Fang Chen, Mingqiang Shen, Cheng Wang, Shilei Chen, Song Wang, Junping Wang
{"title":"Mitochondrial serine catabolism safeguards maintenance of the hematopoietic stem cell pool in homeostasis and injury","authors":"Changhong Du, Chaonan Liu, Kuan Yu, Shuzhen Zhang, Zeyu Fu, Xinliang Chen, Weinian Liao, Jun Chen, Yimin Zhang, Xinmiao Wang, Mo Chen, Fang Chen, Mingqiang Shen, Cheng Wang, Shilei Chen, Song Wang, Junping Wang","doi":"10.1016/j.stem.2024.07.009","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.009","url":null,"abstract":"<p>Hematopoietic stem cells (HSCs) employ a very unique metabolic pattern to maintain themselves, while the spectrum of their metabolic adaptations remains incompletely understood. Here, we uncover a distinct and heterogeneous serine metabolism within HSCs and identify mouse HSCs as a serine auxotroph whose maintenance relies on exogenous serine and the ensuing mitochondrial serine catabolism driven by the hydroxymethyltransferase 2 (SHMT2)-methylene-tetrahydrofolate dehydrogenase 2 (MTHFD2) axis. Mitochondrial serine catabolism primarily feeds NAD(P)H generation to maintain redox balance and thereby diminishes ferroptosis susceptibility of HSCs. Dietary serine deficiency, or genetic or pharmacological inhibition of the SHMT2-MTHFD2 axis, increases ferroptosis susceptibility of HSCs, leading to impaired maintenance of the HSC pool. Moreover, exogenous serine protects HSCs from irradiation-induced myelosuppressive injury by fueling mitochondrial serine catabolism to mitigate ferroptosis. These findings reframe the canonical view of serine from a nonessential amino acid to an essential niche metabolite for HSC pool maintenance.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"37 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incompatibility in cell adhesion constitutes a barrier to interspecies chimerism 细胞粘附不相容是种间嵌合的障碍
IF 23.9 1区 医学
Cell stem cell Pub Date : 2024-08-23 DOI: 10.1016/j.stem.2024.07.010
Emily Ballard, Masahiro Sakurai, Leqian Yu, Lizhong Liu, Seiya Oura, Jia Huang, Jun Wu
{"title":"Incompatibility in cell adhesion constitutes a barrier to interspecies chimerism","authors":"Emily Ballard, Masahiro Sakurai, Leqian Yu, Lizhong Liu, Seiya Oura, Jia Huang, Jun Wu","doi":"10.1016/j.stem.2024.07.010","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.010","url":null,"abstract":"<p>Interspecies blastocyst complementation holds great potential to address the global shortage of transplantable organs by growing human organs in animals. However, a major challenge in this approach is the limited chimerism of human cells in evolutionarily distant animal hosts due to various xenogeneic barriers. Here, we reveal that human pluripotent stem cells (PSCs) struggle to adhere to animal PSCs. To overcome this barrier, we developed a synthetic biology strategy that leverages nanobody-antigen interactions to enhance interspecies cell adhesion. We engineered cells to express nanobodies and their corresponding antigens on their outer membranes, significantly improving adhesion between different species’ PSCs during <em>in vitro</em> assays and increasing the chimerism of human PSCs in mouse embryos. Studying and manipulating interspecies pluripotent cell adhesion will provide valuable insights into cell interaction dynamics during chimera formation and early embryogenesis.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"18 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A primate-specific endogenous retroviral envelope protein sequesters SFRP2 to regulate human cardiomyocyte development 一种灵长类特异性内源性逆转录病毒包膜蛋白能封存 SFRP2,从而调节人类心肌细胞的发育
IF 23.9 1区 医学
Cell stem cell Pub Date : 2024-08-14 DOI: 10.1016/j.stem.2024.07.006
{"title":"A primate-specific endogenous retroviral envelope protein sequesters SFRP2 to regulate human cardiomyocyte development","authors":"","doi":"10.1016/j.stem.2024.07.006","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.006","url":null,"abstract":"<p>Endogenous retroviruses (ERVs) occupy a significant part of the human genome, with some encoding proteins that influence the immune system or regulate cell-cell fusion in early extra-embryonic development. However, whether ERV-derived proteins regulate somatic development is unknown. Here, we report a somatic developmental function for the primate-specific <em>ERVH48-1</em> (<em>SUPYN</em>/Suppressyn). <em>ERVH48-1</em> encodes a fragment of a viral envelope that is expressed during early embryonic development. Loss of <em>ERVH48-1</em> led to impaired mesoderm and cardiomyocyte commitment and diverted cells to an ectoderm-like fate. Mechanistically, ERVH48-1 is localized to sub-cellular membrane compartments through a functional N-terminal signal peptide and binds to the WNT antagonist SFRP2 to promote its polyubiquitination and degradation, thus limiting SFRP2 secretion and blocking repression of WNT/β-catenin signaling. Knockdown of <em>SFRP2</em> or expression of a chimeric SFRP2 with the ERVH48-1 signal peptide rescued cardiomyocyte differentiation. This study demonstrates how <em>ERVH48-1</em> modulates WNT/β-catenin signaling and cell type commitment in somatic development.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"40 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustained amphiregulin expression in intermediate alveolar stem cells drives progressive fibrosis 中间肺泡干细胞中持续表达两性胰岛素会导致渐进性纤维化
IF 23.9 1区 医学
Cell stem cell Pub Date : 2024-08-02 DOI: 10.1016/j.stem.2024.07.004
{"title":"Sustained amphiregulin expression in intermediate alveolar stem cells drives progressive fibrosis","authors":"","doi":"10.1016/j.stem.2024.07.004","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.004","url":null,"abstract":"<p>Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal fibrotic disease. Recent studies have highlighted the persistence of an intermediate state of alveolar stem cells in IPF lungs. In this study, we discovered a close correlation between the distribution pattern of intermediate alveolar stem cells and the progression of fibrotic changes. We showed that amphiregulin (AREG) expression is significantly elevated in intermediate alveolar stem cells of mouse fibrotic lungs and IPF patients. High levels of serum AREG correlate significantly with profound deteriorations in lung function in IPF patients. We demonstrated that AREG in alveolar stem cells is both required and sufficient for activating EGFR in fibroblasts, thereby driving lung fibrosis. Moreover, pharmacological inhibition of AREG using a neutralizing antibody effectively blocked the initiation and progression of lung fibrosis in mice. Our study underscores the therapeutic potential of anti-AREG antibodies in attenuating IPF progression, offering a promising strategy for treating fibrotic diseases.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"48 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophages: A missing key in cardiac tissue engineering for sustained vascularization 巨噬细胞:心脏组织工程中缺失的关键--持续血管化
IF 23.9 1区 医学
Cell stem cell Pub Date : 2024-08-01 DOI: 10.1016/j.stem.2024.07.001
{"title":"Macrophages: A missing key in cardiac tissue engineering for sustained vascularization","authors":"","doi":"10.1016/j.stem.2024.07.001","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.001","url":null,"abstract":"<p>Macrophages regulate angiogenesis, repair, conduction, and homeostasis in heart tissue. Landau et al.<span><span><sup>1</sup></span></span> demonstrate that incorporating primitive macrophages into engineered heart tissues significantly promotes long-term vascularization and cardiac maturation. This advance demonstrates the importance of resident immune-vascular microenvironments in cardiac tissue engineering, marking an important step forward for heart-on-chip technologies.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"16 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Setting the stage for embryo segmentation 为胚胎分割创造条件
IF 23.9 1区 医学
Cell stem cell Pub Date : 2024-08-01 DOI: 10.1016/j.stem.2024.06.014
{"title":"Setting the stage for embryo segmentation","authors":"","doi":"10.1016/j.stem.2024.06.014","DOIUrl":"https://doi.org/10.1016/j.stem.2024.06.014","url":null,"abstract":"<p>Morphogen gradients are critical regulators of embryonic development. In this issue, Liu et al.<span><span><sup>1</sup></span></span> introduce a microfluidic system that externally applies morphogen gradients to an <em>in vitro</em> model of human embryo segmentation. It enables the investigation of signaling gradients during this developmental process at unprecedented levels of precision.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"48 14 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mini-colons predict drug toxicity in vitro 小圆锥体可预测药物的体外毒性
IF 23.9 1区 医学
Cell stem cell Pub Date : 2024-08-01 DOI: 10.1016/j.stem.2024.06.013
{"title":"Mini-colons predict drug toxicity in vitro","authors":"","doi":"10.1016/j.stem.2024.06.013","DOIUrl":"https://doi.org/10.1016/j.stem.2024.06.013","url":null,"abstract":"<p>Mitrofanova et al.<span><span><sup>1</sup></span></span> engineer a human colonic <em>in vitro</em> model capable of producing an intestinal mucus barrier, with potential applications for predicting drug-induced gastrointestinal toxicity. This improved system paves the way for more accurate and efficient drug development processes.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"291 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered vascular grafts lend unique insight to pathophysiology of aortic aneurysms 工程血管移植物为了解主动脉瘤的病理生理学提供了独特视角
IF 23.9 1区 医学
Cell stem cell Pub Date : 2024-08-01 DOI: 10.1016/j.stem.2024.07.002
{"title":"Engineered vascular grafts lend unique insight to pathophysiology of aortic aneurysms","authors":"","doi":"10.1016/j.stem.2024.07.002","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.002","url":null,"abstract":"<p>Yang et al.<span><span><sup>1</sup></span></span> generate tissue engineered blood vessels from hiPSC-derived smooth muscle cells harboring a mutation found in Loeys-Dietz syndrome. <em>In vitro</em> and <em>in vivo</em> data from these vessels provide new insight into the molecular physiology of aortic aneurysms and may create a paradigm for understanding a suite of vascular diseases.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"69 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acetyl-CoA metabolism maintains histone acetylation for syncytialization of human placental trophoblast stem cells 乙酰-CoA 代谢维持组蛋白乙酰化,促进人胎盘滋养层干细胞的合胞化
IF 23.9 1区 医学
Cell stem cell Pub Date : 2024-07-30 DOI: 10.1016/j.stem.2024.07.003
{"title":"Acetyl-CoA metabolism maintains histone acetylation for syncytialization of human placental trophoblast stem cells","authors":"","doi":"10.1016/j.stem.2024.07.003","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.003","url":null,"abstract":"<p>During pregnancy, placental-fetal nutrient allocation is crucial for fetal and maternal health. However, the regulatory mechanisms for nutrient metabolism and allocation in placental trophoblasts have remained unclear. Here, we used human first-trimester placenta samples and human trophoblast stem cells (hTSCs) to discover that glucose metabolism is highly active in hTSCs and cytotrophoblasts, but during syncytialization, it decreases to basal levels, remaining necessary for fueling acetyl-CoA and differentiation potential. Acetate supplementation could rescue syncytiotrophoblast fusion from glycolysis deficiency by replenishing acetyl-CoA and maintaining histone acetylation, thus rescuing the activation of syncytialization genes. Even brief glycolysis deficiency could permanently inhibit differentiation potential and promote inflammation, which could also be permanently rescued by brief acetate supplementation <em>in vivo</em>. These results suggest that hTSCs retain only basal glycolytic acetyl-CoA metabolism during syncytialization to regulate cell fates via nutrient-responsive histone acetylation, with implications for our understanding of the balance between placental and fetal nutrition.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"19 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信