Adult bi-paternal offspring generated through direct modification of imprinted genes in mammals

IF 19.8 1区 医学 Q1 CELL & TISSUE ENGINEERING
Zhi-kun Li, Li-bin Wang, Le-yun Wang, Xue-han Sun, Ze-hui Ren, Si-nan Ma, Yu-long Zhao, Chao Liu, Gui-hai Feng, Tao Liu, Tian-shi Pan, Qing-tong Shan, Kai Xu, Guan-zheng Luo, Qi Zhou, Wei Li
{"title":"Adult bi-paternal offspring generated through direct modification of imprinted genes in mammals","authors":"Zhi-kun Li, Li-bin Wang, Le-yun Wang, Xue-han Sun, Ze-hui Ren, Si-nan Ma, Yu-long Zhao, Chao Liu, Gui-hai Feng, Tao Liu, Tian-shi Pan, Qing-tong Shan, Kai Xu, Guan-zheng Luo, Qi Zhou, Wei Li","doi":"10.1016/j.stem.2025.01.005","DOIUrl":null,"url":null,"abstract":"Imprinting abnormalities pose a significant challenge in applications involving embryonic stem cells, induced pluripotent stem cells, and animal cloning, with no universal correction method owing to their complexity and stochastic nature. In this study, we targeted these defects at their source—embryos from same-sex parents—aiming to establish a stable, maintainable imprinting pattern <em>de novo</em> in mammalian cells. Using bi-paternal mouse embryos, which exhibit severe imprinting defects and are typically non-viable, we introduced frameshift mutations, gene deletions, and regulatory edits at 20 key imprinted loci, ultimately achieving the development of fully adult animals, albeit with a relatively low survival rate. The findings provide strong evidence that imprinting abnormalities are a primary barrier to unisexual reproduction in mammals. Moreover, this approach can significantly improve developmental outcomes for embryonic stem cells and cloned animals, opening promising avenues for advancements in regenerative medicine.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"39 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2025.01.005","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Imprinting abnormalities pose a significant challenge in applications involving embryonic stem cells, induced pluripotent stem cells, and animal cloning, with no universal correction method owing to their complexity and stochastic nature. In this study, we targeted these defects at their source—embryos from same-sex parents—aiming to establish a stable, maintainable imprinting pattern de novo in mammalian cells. Using bi-paternal mouse embryos, which exhibit severe imprinting defects and are typically non-viable, we introduced frameshift mutations, gene deletions, and regulatory edits at 20 key imprinted loci, ultimately achieving the development of fully adult animals, albeit with a relatively low survival rate. The findings provide strong evidence that imprinting abnormalities are a primary barrier to unisexual reproduction in mammals. Moreover, this approach can significantly improve developmental outcomes for embryonic stem cells and cloned animals, opening promising avenues for advancements in regenerative medicine.

Abstract Image

在哺乳动物中通过直接修饰印迹基因而产生的成年双父系后代
印迹异常由于其复杂性和随机性,在胚胎干细胞、诱导多能干细胞和动物克隆的应用中没有通用的纠正方法。在这项研究中,我们将这些缺陷定位于它们的来源——来自同性父母的胚胎——旨在在哺乳动物细胞中建立一种稳定、可维持的印迹模式。利用具有严重印迹缺陷且通常无法存活的双父系小鼠胚胎,我们在20个关键印迹位点引入移码突变、基因缺失和调控编辑,最终实现了完全成年动物的发育,尽管存活率相对较低。这些发现提供了强有力的证据,表明印记异常是哺乳动物单性繁殖的主要障碍。此外,这种方法可以显著改善胚胎干细胞和克隆动物的发育结果,为再生医学的进步开辟了有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell stem cell
Cell stem cell 生物-细胞生物学
CiteScore
37.10
自引率
2.50%
发文量
151
审稿时长
42 days
期刊介绍: Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信