生物打印平台并行筛选工程微组织在体内

IF 19.8 1区 医学 Q1 CELL & TISSUE ENGINEERING
Colleen E. O’Connor, Fan Zhang, Anna Neufeld, Olivia Prado, Susana P. Simmonds, Chelsea L. Fortin, Fredrik Johansson, Jonathan Mene, Sarah H. Saxton, Irina Kopyeva, Nicole E. Gregorio, Zachary James, Cole A. DeForest, Elizabeth C. Wayne, Daniela M. Witten, Kelly R. Stevens
{"title":"生物打印平台并行筛选工程微组织在体内","authors":"Colleen E. O’Connor, Fan Zhang, Anna Neufeld, Olivia Prado, Susana P. Simmonds, Chelsea L. Fortin, Fredrik Johansson, Jonathan Mene, Sarah H. Saxton, Irina Kopyeva, Nicole E. Gregorio, Zachary James, Cole A. DeForest, Elizabeth C. Wayne, Daniela M. Witten, Kelly R. Stevens","doi":"10.1016/j.stem.2025.03.002","DOIUrl":null,"url":null,"abstract":"Human engineered tissues hold great promise for therapeutic tissue regeneration and repair. Yet, development of these technologies often stalls at the stage of <em>in vivo</em> studies due to the complexity of engineered tissue formulations, which are often composed of diverse cell populations and material elements, along with the tedious nature of <em>in vivo</em> experiments. We introduce a “plug and play” platform called parallelized host apposition for screening tissues <em>in vivo</em> (PHAST). PHAST enables parallelized <em>in vivo</em> testing of 43 three-dimensional microtissues in a single 3D-printed device. Using PHAST, we screen microtissue formations with varying cellular and material components and identify formulations that support vascular graft-host inosculation and engineered liver tissue function <em>in vivo</em>. Our studies reveal that the cellular population(s) that should be included in engineered tissues for optimal <em>in vivo</em> performance is material dependent. PHAST could thus accelerate development of human tissue therapies for clinical regeneration and repair.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"48 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioprinted platform for parallelized screening of engineered microtissues in vivo\",\"authors\":\"Colleen E. O’Connor, Fan Zhang, Anna Neufeld, Olivia Prado, Susana P. Simmonds, Chelsea L. Fortin, Fredrik Johansson, Jonathan Mene, Sarah H. Saxton, Irina Kopyeva, Nicole E. Gregorio, Zachary James, Cole A. DeForest, Elizabeth C. Wayne, Daniela M. Witten, Kelly R. Stevens\",\"doi\":\"10.1016/j.stem.2025.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human engineered tissues hold great promise for therapeutic tissue regeneration and repair. Yet, development of these technologies often stalls at the stage of <em>in vivo</em> studies due to the complexity of engineered tissue formulations, which are often composed of diverse cell populations and material elements, along with the tedious nature of <em>in vivo</em> experiments. We introduce a “plug and play” platform called parallelized host apposition for screening tissues <em>in vivo</em> (PHAST). PHAST enables parallelized <em>in vivo</em> testing of 43 three-dimensional microtissues in a single 3D-printed device. Using PHAST, we screen microtissue formations with varying cellular and material components and identify formulations that support vascular graft-host inosculation and engineered liver tissue function <em>in vivo</em>. Our studies reveal that the cellular population(s) that should be included in engineered tissues for optimal <em>in vivo</em> performance is material dependent. PHAST could thus accelerate development of human tissue therapies for clinical regeneration and repair.\",\"PeriodicalId\":9665,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":19.8000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2025.03.002\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2025.03.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

人体工程组织在治疗性组织再生和修复方面具有很大的前景。然而,由于工程组织配方的复杂性(通常由不同的细胞群和材料元素组成)以及体内实验的繁琐性,这些技术的发展往往停滞在体内研究阶段。我们引入了一种“即插即用”平台,称为并行宿主定位,用于筛选体内组织(PHAST)。PHAST可以在单个3d打印设备中对43个三维显微组织进行并行体内测试。使用PHAST,我们筛选具有不同细胞和材料成分的微组织形成,并确定支持血管移植物-宿主融合和体内工程肝组织功能的配方。我们的研究表明,为了获得最佳的体内性能,应该包括在工程组织中的细胞群是依赖于材料的。因此,PHAST可以加速用于临床再生和修复的人体组织疗法的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioprinted platform for parallelized screening of engineered microtissues in vivo

Bioprinted platform for parallelized screening of engineered microtissues in vivo
Human engineered tissues hold great promise for therapeutic tissue regeneration and repair. Yet, development of these technologies often stalls at the stage of in vivo studies due to the complexity of engineered tissue formulations, which are often composed of diverse cell populations and material elements, along with the tedious nature of in vivo experiments. We introduce a “plug and play” platform called parallelized host apposition for screening tissues in vivo (PHAST). PHAST enables parallelized in vivo testing of 43 three-dimensional microtissues in a single 3D-printed device. Using PHAST, we screen microtissue formations with varying cellular and material components and identify formulations that support vascular graft-host inosculation and engineered liver tissue function in vivo. Our studies reveal that the cellular population(s) that should be included in engineered tissues for optimal in vivo performance is material dependent. PHAST could thus accelerate development of human tissue therapies for clinical regeneration and repair.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell stem cell
Cell stem cell 生物-细胞生物学
CiteScore
37.10
自引率
2.50%
发文量
151
审稿时长
42 days
期刊介绍: Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信