Bioprinted platform for parallelized screening of engineered microtissues in vivo

IF 19.8 1区 医学 Q1 CELL & TISSUE ENGINEERING
Colleen E. O’Connor, Fan Zhang, Anna Neufeld, Olivia Prado, Susana P. Simmonds, Chelsea L. Fortin, Fredrik Johansson, Jonathan Mene, Sarah H. Saxton, Irina Kopyeva, Nicole E. Gregorio, Zachary James, Cole A. DeForest, Elizabeth C. Wayne, Daniela M. Witten, Kelly R. Stevens
{"title":"Bioprinted platform for parallelized screening of engineered microtissues in vivo","authors":"Colleen E. O’Connor, Fan Zhang, Anna Neufeld, Olivia Prado, Susana P. Simmonds, Chelsea L. Fortin, Fredrik Johansson, Jonathan Mene, Sarah H. Saxton, Irina Kopyeva, Nicole E. Gregorio, Zachary James, Cole A. DeForest, Elizabeth C. Wayne, Daniela M. Witten, Kelly R. Stevens","doi":"10.1016/j.stem.2025.03.002","DOIUrl":null,"url":null,"abstract":"Human engineered tissues hold great promise for therapeutic tissue regeneration and repair. Yet, development of these technologies often stalls at the stage of <em>in vivo</em> studies due to the complexity of engineered tissue formulations, which are often composed of diverse cell populations and material elements, along with the tedious nature of <em>in vivo</em> experiments. We introduce a “plug and play” platform called parallelized host apposition for screening tissues <em>in vivo</em> (PHAST). PHAST enables parallelized <em>in vivo</em> testing of 43 three-dimensional microtissues in a single 3D-printed device. Using PHAST, we screen microtissue formations with varying cellular and material components and identify formulations that support vascular graft-host inosculation and engineered liver tissue function <em>in vivo</em>. Our studies reveal that the cellular population(s) that should be included in engineered tissues for optimal <em>in vivo</em> performance is material dependent. PHAST could thus accelerate development of human tissue therapies for clinical regeneration and repair.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"48 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2025.03.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Human engineered tissues hold great promise for therapeutic tissue regeneration and repair. Yet, development of these technologies often stalls at the stage of in vivo studies due to the complexity of engineered tissue formulations, which are often composed of diverse cell populations and material elements, along with the tedious nature of in vivo experiments. We introduce a “plug and play” platform called parallelized host apposition for screening tissues in vivo (PHAST). PHAST enables parallelized in vivo testing of 43 three-dimensional microtissues in a single 3D-printed device. Using PHAST, we screen microtissue formations with varying cellular and material components and identify formulations that support vascular graft-host inosculation and engineered liver tissue function in vivo. Our studies reveal that the cellular population(s) that should be included in engineered tissues for optimal in vivo performance is material dependent. PHAST could thus accelerate development of human tissue therapies for clinical regeneration and repair.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell stem cell
Cell stem cell 生物-细胞生物学
CiteScore
37.10
自引率
2.50%
发文量
151
审稿时长
42 days
期刊介绍: Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信