{"title":"Degradation and transformation of tylvalosin by newly selected Providencia vermicola strain CT1: removal efficiency, pathways, mechanisms, and actual applications.","authors":"Ruina Chai, Meng Meng, Qi Li, Hansong Zhao, Yinglin Zhao, Jianxiang Zhong, Yunying Liu, Wenyuan Zhao, Xiaoxia Wang, Jianguo Cheng","doi":"10.1007/s00449-025-03140-6","DOIUrl":"10.1007/s00449-025-03140-6","url":null,"abstract":"<p><p>Tylvalosin (TAT) is a widely used veterinary antibiotic whose residual contaminants promote antibiotic resistance and pose potential risks to human health and ecosystems. This study successfully isolated and identified a TAT-degrading bacterial strain, Providencia vermicola strain CT1, through 16S rRNA analysis and biochemical tests. Under optimized conditions (30 °C, pH = 6, initial TAT concentration of 300 mg/L, and bacterial culture volume of 50 mL), strain CT1 achieved a TAT degradation percentage of 97.1%. The degradation process followed a first-order kinetic model and was primarily driven by extracellular metabolites. GC-MS analysis identified that strain CT1 degrades TAT to produce small molecules such as 3-methylbutanoic acid, ethyl acetate, and 3-iminopentan-2-one. Strain CT1 effectively degraded TAT in actual wastewater samples, achieving 95% degradation within 60 h, and significantly reduced the COD, BOD₅, and NH₄⁺-N concentrations. These findings provide theoretical guidelines for removing TAT and other macrolide antibiotic contaminants from the environment.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"749-760"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143613056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancement of natamycin production by combining ARTP mutagenesis with temperature control strategy development in Streptomyces gilvosporeus.","authors":"Jian Xue, Wen Xiao, Yuxiu Xu, Liang Wang, Jianhua Zhang, Hongjian Zhang, Xusheng Chen","doi":"10.1007/s00449-025-03145-1","DOIUrl":"10.1007/s00449-025-03145-1","url":null,"abstract":"<p><p>Natamycin, a natural antifungal compound produced by Streptomyces, possesses antibacterial activity against yeast and mold. However, its low yield hinders widespread application in the food and pharmaceutical industries. This study aims to enhance natamycin production of Streptomyces gilvosporeus through engineering strain and optimization bioprocess. A high-yield strain exhibiting robust genetic stability was bred, yielding a 19.8% increase in shake flask fermentation and a 26.3% increase in fed-batch fermentation compared to the starting strain. The influence of temperature on high-yield strains was examined separately through batch fermentation and fed-batch fermentation. Subsequently, based on comprehensive analysis of fermentation kinetic parameters, a two-stage temperature control strategy was proposed. Specifically, the temperature was maintained at 30 ℃ for the first 18 h to shorten the lag phase, followed by a reduction to 26 ℃ and maintaining this temperature until the end of fermentation. Under this strategy, the natamycin production reached 14.4 g·L<sup>-1</sup>, representing a 25.2% increase compared to constant temperature fermentation at 28 ℃. This study provided an efficient production strategy for natamycin.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"817-827"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhixing Qiao, Xiaoyu Dong, Tong Yang, Lichen Hu, Tao Yin
{"title":"Carbon paper anodes decorated with TiO<sub>2</sub> nanowires and Au nanoparticles for facilitating bacterial extracellular electron transfer.","authors":"Zhixing Qiao, Xiaoyu Dong, Tong Yang, Lichen Hu, Tao Yin","doi":"10.1007/s00449-025-03141-5","DOIUrl":"10.1007/s00449-025-03141-5","url":null,"abstract":"<p><p>Au nanoparticles-composite TiO<sub>2</sub> nanowires (NWs) modified carbon paper (CP) anode was synthesized via the hydrothermal method. Field emission scanning electron microscopy (FESEM) images demonstrate that the modified nanocomposite electrode features a rough and bumpy surface structure. The electrochemical activities of TiO<sub>2</sub>-Au/CP and the control electrodes (TiO<sub>2</sub>-NWs/CP, Au/CP, CP) for microbial fuel cell (MFC) are investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). When using TiO<sub>2</sub>-Au/CP as a bioanode, the maximum power output density of Shewanella loihica PV-4 inoculated MFC increases by 49.7%, 26.5% and 190.6% compared with that when using TiO<sub>2</sub>-NWs/CP, Au/CP and bare CP as bioanodes, respectively. CV analysis indicates that TiO<sub>2</sub>-Au mediates direct and indirect electron transfer between the electrode and the bacteria, as evidenced by the appearance of redox peaks with mid-point potentials E<sub>m</sub> of - 0.305 V and -0.465 V, respectively. The generation of bioelectricity reveals the formation of a biofilm on the electrode surface. Furthermore, compared with the control electrodes, the MFC assembled with a TiO<sub>2</sub>-Au anode exhibits a smaller semicircle in the high-frequency region, representing a lower charge transfer resistance (R<sub>ct</sub>). The improvement in MFC performance can be attributed to the fact that the combination of TiO<sub>2</sub> and Au enhances the conductivity and electrochemical activity of the electrode, along with its good biocompatibility and large specific surface area, which are favorable for bacterial colonization. Thus, TiO<sub>2</sub>-Au/CP serves as an ideal anode material featuring simple synthesis. Additionally, its surface modifier, TiO<sub>2</sub>-Au can be extended for the modification of other base electrodes, enabling the acquisition of high-quality anodes for MFCs.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"761-769"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143596175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Highly efficient production of prodigiosin from corn stover hydrolysate in Serratia marcescens mutant RZ 21-6C generated by atmospheric and room‑temperature plasma mutagenesis.","authors":"Zi-Ang Zhang, Meng Tang, Jing Yang, Qi-Yin Yang, Chuan-Chao Dai, Fei Chen","doi":"10.1007/s00449-025-03144-2","DOIUrl":"10.1007/s00449-025-03144-2","url":null,"abstract":"<p><p>Prodigiosin, a natural pigment mainly produced by microorganisms, has a wide range of applications in medicine, agriculture, and environmental protection. To improve the production efficiency of prodigiosin and develop a low-cost biomass carbon source to reduce the fermentation cost, we mutated Serratia marcescens strain isolated previously in our laboratory through atmospheric and room-temperature plasma (ARTP) mutation breeding and obtained a mutant strain RZ 21-6C with a high pigment production and high genetic stability. The fermentation performance analysis of different carbon sources showed that the mutant strain not only significantly improved the conversion of conventional carbon source - sucrose, but also synthesized prodigiosin from xylose and glucose. In particular, the utilization efficiency of xylose was very high. Based on the above characteristics, low-cost biomass carbon source corn stover hydrolysate with xylose as the main component was developed for the production of prodigiosin. The highest concentration of prodigiosin in fed-batch fermentation reached 16.17 g.L<sup>-1</sup>, with a production efficiency of 0.12 g.L<sup>-1</sup>.h<sup>-1</sup>, and a total sugar conversion rate of 20.21%. The transmission electron microscopy (TEM) observation of strains and of cell membrane components and permeability showed significant changes in the physiological state of the mutant strain to facilitate pigment efflux and substrate pumping. Finally, combined with the physiological data and proteomic results, the underlying mechanism of efficient prodigiosin production by RZ 21-6C was explained from the perspective of phenotypic changes, prodigiosin synthesis, membrane transport, glycogen utilization, and primary metabolism. In this study, a S. marcescens RZ 21-6C strain with excellent characteristics was obtained by modern physical mutagenesis for the biosynthesis of prodigiosin using the hydrolysate of corn stover, an agricultural waste, as a fermentation substrate, which provides an important technological support for the renewable biorefinery of prodigiosin bio-based products.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"799-816"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143662155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of oyster protein-enhanced scaffolds with seven-band grouper muscle satellite cells for cultured seafood production.","authors":"Selvakumari Ulagesan, Sathish Krishnan, Taek-Jeong Nam, Youn-Hee Choi","doi":"10.1007/s00449-025-03148-y","DOIUrl":"10.1007/s00449-025-03148-y","url":null,"abstract":"<p><p>Cell-based aquaculture holds significant promise for revolutionizing the seafood industry by addressing the limitations of traditional fishing and aquaculture practices. In this study muscle cells from Seven-band grouper (SBG) Epinephelus septemfasciatus were isolated using an enzymatic digestion method. Initial cell attachment and growth were monitored, showing robust proliferation when cultured in L-15 medium supplemented with 10% fetal bovine serum (FBS) and basic fibroblast growth factor (bFGF). We assessed the biocompatibility and cytotoxicity of two protein sources, oyster protein (OP) and soy protein (SP), for their effects on grouper muscle cell viability and growth. OP demonstrated strong biocompatibility, effectively supporting cell viability and significantly promoting muscle cell proliferation. At a concentration of 10,000 µg/mL, OP increased muscle cell proliferation by up to 90% after 48 h of incubation. SP, however, exhibited dose-dependent cytotoxic effects, with reduced cell viability observed at higher concentrations (10,000 µg/mL) over 48 h. This comparative analysis indicates that OP maintains cellular health and enhances cell growth, while SP may limit cell viability at elevated concentrations. Following these findings, we prepared a scaffold using Alginate-κ-Carrageenan (Alg-κ-Car) combined with oyster protein (Alg-κ-Car-OP), which showed enhanced gelation and printability properties. 3D bioprinting of grouper muscle satellite cells (GMSC) within Alg-κ-Car-OP scaffolds resulted in higher cell viability than Alg-κ-Car scaffolds alone. Taste sensory analysis using an electronic tongue revealed distinct taste profiles, with Alg-κ-Car-OP-GMSC scaffolds exhibiting the highest umami score. Flavor analysis using flash gas chromatography and an electronic nose differentiated between scaffold types and protein samples, highlighting potential flavor markers. These findings underscore the potential of cell-based aquaculture, especially with OP-incorporated scaffolds, to meet the demand for sustainable and nutritious seafood alternatives. Further research is warranted to optimize production processes and explore commercial applications.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"857-875"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143690965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioprocess biomarker identification and diagnosis for industrial mAb production based on metabolic profiling and multivariate data analysis.","authors":"Yingting Shi, Yuxiang Wan, Jiayu Yang, Yuting Lu, Xinyuan Xie, Jianyang Pan, Haibin Wang, Haibin Qu","doi":"10.1007/s00449-025-03142-4","DOIUrl":"10.1007/s00449-025-03142-4","url":null,"abstract":"<p><p>Monoclonal antibody (mAb) production is a complex bioprocess influenced by various cellular and metabolic factors. Understanding these interactions is critical for optimizing manufacturing and improving yields. In this study, we proposed a diagnostic and identification strategy using quantitative proton nuclear magnetic resonance (<sup>1</sup>H qNMR) technology-based pharmaceutical process-omics to analyze bioprocess variability and unveil significant metabolites affecting cell growth and yield during industrial mAb manufacturing. First, batch level model (BLM) and orthogonal partial least squares-discriminant analysis (OPLS-DA) identified glucose and lactate as primary contributors to culture run variability. Maintaining an optimal glucose set point was crucial for high-yield runs. Second, a partial least squares (PLS) regression model was established, which revealed viable cell density (VCD), along with glutamine, maltose, tyrosine, citrate, methionine, and lactate, as critical variables impacting mAb yield. Finally, hierarchical clustering analysis (HCA) highlighted one-carbon metabolism metabolites, such as choline, pyroglutamate, and formate, as closely associated with VCD. These findings provide a foundation for future bioprocess optimization through cell line engineering and media formulation adjustments, ultimately enhancing mAb production efficiency.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"771-783"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143596174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Degradation and detoxification of aflatoxin B1 by two peroxidase enzymes from Irpex lacteus F17.","authors":"Xiaping Xu, Peilin Lin, Yongming Lu, Rong Jia","doi":"10.1007/s00449-025-03137-1","DOIUrl":"10.1007/s00449-025-03137-1","url":null,"abstract":"<p><p>Aflatoxin B1 (AFB1), the most toxic mycotoxin produced by some Aspergillus species, is commonly found in agricultural products, especially grains, and poultry feeds. Enzymic degradation is considered to be the most promising detoxification method, because it is efficient, safe and causes minimal damage to the nutritional quality of treated foods. In this study, a recombinant manganese peroxidase (Il-MnP1) and a recombinant dye-decolorizing peroxidase (Il-DyP4) from Irpex lacteus F17 were used to degrade AFB1, either individually or in combination. The degree of degradation of AFB1 by the combined enzymes of Il-MnP1 + Il-DyP4 was higher than that of either enzyme acting alone. The half-life of AFB1 degradation by the combined enzymes was lower than that of either enzyme alone. Further analysis of the degradation products indicated that the use of the combination of Il-MnP1 + Il-DyP4 to degrade AFB1 resulted in a greater number of metabolites, including five new degradation products with the chemical formulas, C<sub>16</sub>H<sub>10</sub>O<sub>8</sub>, C<sub>15</sub>H<sub>10</sub>O<sub>5</sub>, C<sub>15</sub>H<sub>10</sub>O<sub>6</sub>, C<sub>16</sub>H<sub>10</sub>O<sub>7</sub>, and C<sub>16</sub>H<sub>8</sub>O<sub>7</sub>. The system of Il-MnP1 + Il-DyP4 contained multiple enzyme activities that could act on different toxic sites of AFB1, thereby producing metabolites with lower toxicity and carcinogenicity, which was consistent with the results of the Ames test. These findings suggest that using the combined enzymes to convert AFB1 into non-toxic products is a good strategy for detoxifying contaminated foods and feeds.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"693-704"},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anita Srivastava, Arjun Rastogi, Avijeet S Jaswal, Jatindra K Sahu, Gopal P Agarwal, Saroj Mishra
{"title":"Nanofiltration-based purification process for whole-cell transformed prebiotic galactooligosaccharides.","authors":"Anita Srivastava, Arjun Rastogi, Avijeet S Jaswal, Jatindra K Sahu, Gopal P Agarwal, Saroj Mishra","doi":"10.1007/s00449-025-03132-6","DOIUrl":"10.1007/s00449-025-03132-6","url":null,"abstract":"<p><p>The enrichment of galactooligosaccharides (GOS), synthesized by whole cells of Kluyveromyces marxianus 3551 in a 5.0-L bioreactor, was investigated in this study. The synthesized sugar mixture containing 17.89% (w/w of total carbohydrates) of GOS with 15.57% (w/w of total carbohydrates) of lactose, and 66.54% (w/w of total carbohydrates) monosaccharides as impurities, was subjected to nanofiltration for enrichment of GOS. Three distinct spiral wound membranes, namely, NFPS-01(polysulfone), NFCA-02 (cellulose acetate), and NFPES-03 (polyethersulfone) were tested out of which the NFPES-03 performed the best for fractionation of the GOS mixture. The polyethersulphone membrane (cut-off 400-1000 Da) was evaluated at 30 ℃ and 50 ℃, at different transmembrane pressures or TMP (15, 20, 25 bar) and a combination of high temperature (50 ℃) and low pressure (15 bar) gave the greatest difference in the trisaccharide and disaccharide/monosaccharide rejection percentages, resulting in enrichment of GOS. An analysis of the sugar concentrations in the retentate samples by high-performance liquid chromatography indicated the percentage recovery of GOS in the integrated process to be 88.8%. Measurement of the growth profile of several microbes on the nano-filtered GOS demonstrated its effectiveness as a prebiotic source.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"621-631"},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbial community structure and functional characteristics in a membrane bioreactor used for real rural wastewater treatment.","authors":"Yanyan Wang, Shaoqing Su, Haojie Qiu, Liang Guo, Weihua Zhao, Yingying Qin, Chao Wang, Zhisheng Zhao, Xiang Ding, Guoli Liu, Tiantian Hu, Zenghua Wang","doi":"10.1007/s00449-025-03129-1","DOIUrl":"10.1007/s00449-025-03129-1","url":null,"abstract":"<p><p>Membrane bioreactors (MBRs) have been widely used in the field of wastewater treatment because of their small footprint and high treatment efficiency. In this research, 10 rural wastewater treatment sites in China that employ the MBR process were systematically studied. Specifically, treatment of actual domestic wastewater using MBRs was examined by high-throughput 16S rRNA gene sequencing to explore the microbial community composition and perform function prediction. The data of water quality parameters revealed high removal rates of chemical oxygen demand and NH<sub>4</sub><sup>+</sup>-N in all the sites. Proteobacteria were absolutely dominant in all the sites. Thauera, Nitrospira, Ferribacterium, and Dechloromonas were the main functional genera responsible for nitrogen and phosphorus removal at the tested sites. Nitrospira includes conventional nitrite-oxidizing bacteria and complete ammonia-oxidizing bacteria. Among them, 26 genes related to nitrogen metabolism were retrieved according to gene prediction, which verified the good NH<sub>4</sub><sup>+</sup>-N removal efficiency at the tested sites. This study focuses on the analysis of microbial community structure and functional characteristics of MBR-based treatment systems for rural wastewater treatment, thereby providing a microbial basis for improving rural wastewater treatment processes.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"577-588"},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioinspired synthesis of copper oxide nanoparticles using aqueous extracts of Cladophora glomerata (L.) Kuetz and their potential biomedical applications.","authors":"Vinay Kumar, Yadvinder Singh, Sandeep Kaushal, Ranvijay Kumar","doi":"10.1007/s00449-025-03133-5","DOIUrl":"10.1007/s00449-025-03133-5","url":null,"abstract":"<p><p>Present study deals with the green fabrication of copper oxide nanoparticles (CuO NPs) employing cell-free aqueous extract of Cladophora glomerata (L.) Kuetz, freshwater algal species. The UV-visible, FTIR, XRD, FESEM, HRTEM, EDX, BET, XPS and Raman spectroscopic techniques were used to confirm and characterize the biosynthesized CuO NPs. The UV-Vis analysis revealed a sharp peak at 264 nm with a band gap of 3.7 eV, which was attributable to the fabrication of CuO NPs. FESEM and HRTEM detect the spherical-shaped morphology with size between 40 and 50 nm. The biochemical profiling of cell free extract of the C. glomerata by Gas chromatography-mass spectrometry (GC-MS) revealed the presence of various bioactive biomolecules that may acts as a precursor for the fabrication of CuO NPs. The antibacterial study of fabricated CuO NPs revealed significant growth inhibitory potential against selected bacterial strains Klebsiella pneumoniae and Bacillus cereus with an IC<sub>50</sub> value of 10 μg/ml. The synthesized CuO NPs also displayed strong DPPH radical scavenging (IC<sub>50</sub> value 11.25 mg/L) and total antioxidant (IC<sub>50</sub> value 11 mg/L) properties. Further, the anticancer activity of fabricated CuO NPs was studied employing a human hepatocellular carcinoma (HepG2) cell line by MTT assay, which marks their ability to diminish the 50% cell with IC<sub>50</sub> value of 168.6 µg/ml. Overall, the findings confirmed that CuO NPs fabricated employing cell-free extract of C. glomerata have the potential to be used as active agent in various biomedical applications after further detailed clinical investigations.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"633-646"},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}