Nicole Novelli do Nascimento, Ana Bárbara Moulin Cansian, Jumara Silva de Sousa, Fernanda Novelli Negrão, Paulo Waldir Tardioli, Angélica Marquetotti Salcedo Vieira
{"title":"Plants lipases: challenges, recent advances, and future prospects - a review.","authors":"Nicole Novelli do Nascimento, Ana Bárbara Moulin Cansian, Jumara Silva de Sousa, Fernanda Novelli Negrão, Paulo Waldir Tardioli, Angélica Marquetotti Salcedo Vieira","doi":"10.1007/s00449-025-03164-y","DOIUrl":null,"url":null,"abstract":"<p><p>Plant lipases offer a sustainable and promising alternative for various industrial applications, with increasing use in biocatalytic processes in recent years. Leveraging plants as renewable resources reduces dependence on animal or microbial sources, providing significant potential for sustainable lipase production. These lipases are biodegradable and less toxic, enhancing their cost-effectiveness, particularly when sourced from plants with additional economic value. The diversity of plant species offers a wide array of lipases with different properties, broadening their industrial applications. Additionally, integrating plant lipase production into existing agricultural processes by using agricultural residues or by-products as enzyme sources can reduce costs and add value to waste materials. Despite their potential, several challenges must be addressed for the effective utilization of plant-derived lipases. Reducing extraction and purification costs is essential to make these enzymes competitive with other sources. Advancements in the biochemical and structural characterization of plant lipases have facilitated enzymatic engineering approaches to enhance enzyme stability, specificity, and catalytic efficiency. A review of the current research can help identify gaps and suggest new directions for enzyme development and technological advancements. Understanding the mechanisms of action and unique properties of plant lipases can drive innovations in biocatalytic processes. This review aims to highlight the characteristics of plant lipases and the challenges in their extraction, purification, and stability. This study conducted a narrative review using a database of relevant studies, selecting 92 studies. The future of plant lipases holds great promise for transformative impacts across various industries, promoting more sustainable and innovative practices.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1049-1067"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03164-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant lipases offer a sustainable and promising alternative for various industrial applications, with increasing use in biocatalytic processes in recent years. Leveraging plants as renewable resources reduces dependence on animal or microbial sources, providing significant potential for sustainable lipase production. These lipases are biodegradable and less toxic, enhancing their cost-effectiveness, particularly when sourced from plants with additional economic value. The diversity of plant species offers a wide array of lipases with different properties, broadening their industrial applications. Additionally, integrating plant lipase production into existing agricultural processes by using agricultural residues or by-products as enzyme sources can reduce costs and add value to waste materials. Despite their potential, several challenges must be addressed for the effective utilization of plant-derived lipases. Reducing extraction and purification costs is essential to make these enzymes competitive with other sources. Advancements in the biochemical and structural characterization of plant lipases have facilitated enzymatic engineering approaches to enhance enzyme stability, specificity, and catalytic efficiency. A review of the current research can help identify gaps and suggest new directions for enzyme development and technological advancements. Understanding the mechanisms of action and unique properties of plant lipases can drive innovations in biocatalytic processes. This review aims to highlight the characteristics of plant lipases and the challenges in their extraction, purification, and stability. This study conducted a narrative review using a database of relevant studies, selecting 92 studies. The future of plant lipases holds great promise for transformative impacts across various industries, promoting more sustainable and innovative practices.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.