Bioprocess and Biosystems Engineering最新文献

筛选
英文 中文
Genetic algorithm-optimized artificial neural network for multi-objective optimization of biomass and exopolysaccharide production by Haloferax mediterranei.
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-01 Epub Date: 2025-03-22 DOI: 10.1007/s00449-025-03143-3
Alaa M Al Rawahi, Mohd Zafar, Taqi Ahmed Khan, Sara Al Araimi, Biswanath Mahanty, Shishir Kumar Behera
{"title":"Genetic algorithm-optimized artificial neural network for multi-objective optimization of biomass and exopolysaccharide production by Haloferax mediterranei.","authors":"Alaa M Al Rawahi, Mohd Zafar, Taqi Ahmed Khan, Sara Al Araimi, Biswanath Mahanty, Shishir Kumar Behera","doi":"10.1007/s00449-025-03143-3","DOIUrl":"10.1007/s00449-025-03143-3","url":null,"abstract":"<p><p>Microbial production of industrially important exopolysaccharide (EPS) from extremophiles has several advantages. In this study, key media components (i.e., sucrose, yeast extract, and urea) were optimized for biomass growth and extracellular EPS production in Haloferax mediterranei DSM 1411 using Box-Behnken design. In a multi-objective optimization framework, response surface methodology (RSM) and genetic algorithm (GA)-optimized artificial neural network (ANN) were used to minimize biomass growth while increasing EPS production. The performance of the selected ANN model for the prediction of biomass and EPS (R<sup>2</sup>: 0.964 and 0.975, respectively) was found to be better than that of the multiple regression model (R<sup>2</sup>: 0.818, 0.963, respectively). The main effect of sucrose and its interaction with urea appears to have a significant effect on both responses. The ANN model projects an increase in EPS production from 4.49 to 18.2 g l<sup>-1</sup> while shifting the priority from biomass to biopolymer. The optimized condition predicted a maximum biomass and EPS production of 17.27 g l<sup>-1</sup> and 17.80 g l<sup>-1</sup>, respectively, at concentrations of sucrose (19.98 g l<sup>-1</sup>), yeast extract (1.97 g l<sup>-1</sup>), and urea (1.99 g l<sup>-1</sup>). Based on multi-objective optimization, the GA-ANN model predicted an increase in the EPS to biomass ratio for increasing the EPS and associated biomass production. The extracted EPS, identified as Gellan gum through NMR spectroscopy, was further characterized for surface and elemental composition using SEM-EDX analysis.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"785-798"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143690968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient enzymatic hydrolysis of sweet potato residue by fed-batch method to prepare high- concentration glucose.
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-01 Epub Date: 2025-03-25 DOI: 10.1007/s00449-025-03146-0
Shaoyu Wang, Jialong Xu, Shuai Xu, Yuxiang Li, Zhongbo Sun, Dahai Li, Yaohong Ma, Juanjuan Qian, Liping Tan, Tongjun Liu
{"title":"Efficient enzymatic hydrolysis of sweet potato residue by fed-batch method to prepare high- concentration glucose.","authors":"Shaoyu Wang, Jialong Xu, Shuai Xu, Yuxiang Li, Zhongbo Sun, Dahai Li, Yaohong Ma, Juanjuan Qian, Liping Tan, Tongjun Liu","doi":"10.1007/s00449-025-03146-0","DOIUrl":"10.1007/s00449-025-03146-0","url":null,"abstract":"<p><p>China is the largest producer and exporter of sweet potato in the world. Sweet potato residue (SPR) separated after starch extraction account for more than 10% of the total dry matter of sweet potatoes. However, large amounts of unutilized SPR can cause environmental pollution. SPR is rich in starch and cellulose, both of which can be converted into glucose, making it a good carbon source for microbial fermentation. Therefore, an efficient SPR enzymatic process needs to be developed. The technological conditions of high-solid enzymatic hydrolysis of SPR by fed-batch was investigated in detail. Cellulase, amylase, and pectinase had synergistic effects on SPR enzymatic digestion. The experiments were first conducted to optimize the total enzyme addition of 15 mg enzyme protein/g substrate. The experiments were designed using Design-Expert (10.0) to optimize the enzyme proportions to 42%, 31.8%, and 26.2% for cellulase, amylase, and pectinase, respectively. The fed-batch enzymatic hydrolysis of SPR was investigated. The feed time and amount were optimized. The results showed that the initial SPR enzymatic hydrolysis concentration was 14% (w/v), 9% (w/v) was added at 3 h, 6 h and 12 h, respectively and the final substrate concentration was 41% (w/v). After 24 h of enzymatic hydrolysis, the glucose concentration obtained was 194.57 g/L and the glucan conversion was 63.58%. The fed-batch enzymatic hydrolysis of SPR described in this study has great potential for the whole chain utilization of sweet potato and in the microbial fermentation industry as it is environmentally friendly, economical and efficient.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"829-839"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental bioremediation of pharmaceutical residues: microbial processes and technological innovations: a review. 药物残留的环境生物修复:微生物过程和技术创新:综述。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-01 Epub Date: 2025-01-06 DOI: 10.1007/s00449-024-03125-x
Upeksha Gayangani Jayasekara, Tony Hadibarata, Dwi Hindarti, Budi Kurniawan, Mohammad Noor Hazwan Jusoh, Paran Gani, Inn Shi Tan, Adhi Yuniarto, Rubiyatno, Mohd Hairul Bin Khamidun
{"title":"Environmental bioremediation of pharmaceutical residues: microbial processes and technological innovations: a review.","authors":"Upeksha Gayangani Jayasekara, Tony Hadibarata, Dwi Hindarti, Budi Kurniawan, Mohammad Noor Hazwan Jusoh, Paran Gani, Inn Shi Tan, Adhi Yuniarto, Rubiyatno, Mohd Hairul Bin Khamidun","doi":"10.1007/s00449-024-03125-x","DOIUrl":"10.1007/s00449-024-03125-x","url":null,"abstract":"<p><p>The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a significant concern due to their persistence, bioaccumulation potential in biota, and diverse implications for human health and wildlife. This review provides an overview of the current state-of-the-art in environmental bioremediation techniques for reducing pharmaceutical residues, with a special emphasis on microbial physiological aspects. Numerous microorganisms, including algae, bacteria or fungi, can biodegrade various pharmaceutical compounds such as antibiotics, analgesics and beta-blockers. Some microorganisms are capable of transferring electrons within the cell, and this feature can be harnessed using Bio Electrochemical Systems (BES) to potentiate the degradation of pharmaceuticals present in wastewater. Moreover, researchers are evaluating the genetic modification of microbial strains to improve their degradation capacity and expand list of target compounds. This includes also discuss how environment changes, such as fluctuations in temperature or pH, may affect bioremediation efficiency. Furthermore, the presence of pharmaceuticals in the environment is emphasised as a major public health issue because it increases the chance for antibiotic-resistant bacteria emerging. This review combines existing information and outlines needed research areas for improving bioremediation technologies in the future.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"705-723"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ synthesis of silver nanoparticles on silk: producing antibacterial fabrics.
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-01 Epub Date: 2025-03-03 DOI: 10.1007/s00449-025-03138-0
Xiao-Qian Jin, Jia-Lei Li, Jie Liu, Liang-Liang Chen, Chan Liu, Ya-Qing Zhou, Wen-Pu Shi, Huan Liang, Wei-Hong Guo, Da-Chuan Yin
{"title":"In situ synthesis of silver nanoparticles on silk: producing antibacterial fabrics.","authors":"Xiao-Qian Jin, Jia-Lei Li, Jie Liu, Liang-Liang Chen, Chan Liu, Ya-Qing Zhou, Wen-Pu Shi, Huan Liang, Wei-Hong Guo, Da-Chuan Yin","doi":"10.1007/s00449-025-03138-0","DOIUrl":"10.1007/s00449-025-03138-0","url":null,"abstract":"<p><p>Herein, we explored an effective method for preparing silver nanoparticles (Ag NPs)-coated antibacterial silk fabrics. In particular, using amino acids and cellulose from silk as reducing agents and silver nitrate as a precursor, Ag NPs were synthesised in situ on the surface of silk without requiring additional reducing agents and catalysts. The surface morphology and chemical composition of the involved samples were characterised using techniques such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Notably, silk and silk precursors (silkworm cocoons, silk fibers and sericin) could be used for in situ Ag NPs synthesis. Furthermore, the antibacterial properties of the samples were evaluated against Escherichia coli-a Gram-negative bacterium-as a model, demonstrating an impressive antibacterial rate of up to 99.91%. In addition, we investigated the water absorption behaviour of the samples at 25 °C by assessing their moisture regain, water retention value and vertical wick height. The results indicated that the Ag NPs coating did not damage the water absorption performance of the involved silk. Finally, we compared the fabric performance before and after treatment using a universal testing machine and colorimeter. The results showed that the mechanical properties of the fabrics with the Ag NPs coating did not substantially change with treatment, but the fabrics became more yellowish. Overall, this research has notable application potential in the field of antibacterial fabrics.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"725-736"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143539827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid dynamic flux balance modeling approach for bioprocesses: an E. coli case study.
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-01 Epub Date: 2025-03-25 DOI: 10.1007/s00449-025-03147-z
Zahra Negahban, Valerie Ward, Anne Richelle, Chris McCready, Hector Budman
{"title":"Hybrid dynamic flux balance modeling approach for bioprocesses: an E. coli case study.","authors":"Zahra Negahban, Valerie Ward, Anne Richelle, Chris McCready, Hector Budman","doi":"10.1007/s00449-025-03147-z","DOIUrl":"10.1007/s00449-025-03147-z","url":null,"abstract":"<p><p>In this study, we present a hybrid dynamic flux balance analysis (DFBA) model, combined with Partial Least Squares (PLS) regression, to simulate cell culture behavior in response to variations in media composition. DFBA models typically incorporate a stoichiometric matrix representing metabolic reactions, leveraging the pseudo-stationarity assumption to reduce the number of parameters, which in turn minimizes the risk of overfitting. Here, PLS regression is employed to define kinetic rate constraints within the DFBA model, capturing the dynamic and non-linear nature of reaction rates over different culture phases. An optimization approach identifies the minimal number of kinetic constraints required, ensuring model accuracy without excessive complexity. Our hybrid model is validated through simulation case studies using an E. coli system, demonstrating its effectiveness in adjusting to changes in initial media composition. The case studies reveal that the model's accuracy improves with a more detailed stoichiometric matrix, particularly when larger networks or more varied metabolic environments are present. Additionally, the hybrid DFBA-PLS approach provides a robust and scalable modeling framework adaptable to other bioprocesses, offering insights into medium composition effects and highlighting its potential for bioprocess optimization.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"841-856"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143708346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tandem conversion process for the synthesis of polyitaconic acid from glucose in the Aspergillus terreus culture.
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-01 Epub Date: 2025-03-11 DOI: 10.1007/s00449-025-03139-z
Ikumi Kinoshita, Tomonari Tanaka, Yuji Aso
{"title":"A tandem conversion process for the synthesis of polyitaconic acid from glucose in the Aspergillus terreus culture.","authors":"Ikumi Kinoshita, Tomonari Tanaka, Yuji Aso","doi":"10.1007/s00449-025-03139-z","DOIUrl":"10.1007/s00449-025-03139-z","url":null,"abstract":"<p><p>In this study, a bio-based vinylidene monomer, itaconic acid (IA), produced by a fungus Aspergillus terreus NBRC 6123 was polymerized in the culture. The inhibition of IA polymerization by the culture components was eased by extraction with 4-methyltetrahydropyran (4mTHP). The extraction with 4mTHP for 4 days under aerobic condition resulted in IA production at 67.9 g/L (522 mM) in the organic phase from 180 g/L glucose. Interestingly, 4mTHP did not affect to the glucose consumption and respiration of A. terreus. IA polymerization in 4mTHP for 72 h using 400 mM IA and 1 mM 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) as a radical initiator under anaerobic condition by N<sub>2</sub> gas purging resulted in that the IA conversion, and the weight-averaged molecular weight (Mw) and the molecular weight distribution (MWD) of the synthesized polyitaconic acid (polyIA) were 11.5%, 79.8 × 10<sup>3</sup> g/mol, and 1.26, respectively. The respiration by the IA producer itself was used to remove the residual oxygen in the flask by sealing after the IA production. Colorimetric evaluation with a redox indicator, resazurin, revealed that an anaerobic condition which is suitable for the IA polymerization can be accomplished by just incubation for 1 day after the sealing. The synthesis of polyIA from glucose in the same flask with 4mTHP was demonstrated, resulting in that the IA conversion, and Mw and MWD of the synthesized polyIA were 13.8%, 9.1 × 10<sup>3</sup> g/mol, and 1.24, respectively, when 47.1 g/L (362 mM) IA was produced by the extraction for 3 days. To our knowledge, this is the first demonstration of radical polymerization of vinylidene monomer in microbial cultures.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"737-748"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation and transformation of tylvalosin by newly selected Providencia vermicola strain CT1: removal efficiency, pathways, mechanisms, and actual applications.
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-01 Epub Date: 2025-03-12 DOI: 10.1007/s00449-025-03140-6
Ruina Chai, Meng Meng, Qi Li, Hansong Zhao, Yinglin Zhao, Jianxiang Zhong, Yunying Liu, Wenyuan Zhao, Xiaoxia Wang, Jianguo Cheng
{"title":"Degradation and transformation of tylvalosin by newly selected Providencia vermicola strain CT1: removal efficiency, pathways, mechanisms, and actual applications.","authors":"Ruina Chai, Meng Meng, Qi Li, Hansong Zhao, Yinglin Zhao, Jianxiang Zhong, Yunying Liu, Wenyuan Zhao, Xiaoxia Wang, Jianguo Cheng","doi":"10.1007/s00449-025-03140-6","DOIUrl":"10.1007/s00449-025-03140-6","url":null,"abstract":"<p><p>Tylvalosin (TAT) is a widely used veterinary antibiotic whose residual contaminants promote antibiotic resistance and pose potential risks to human health and ecosystems. This study successfully isolated and identified a TAT-degrading bacterial strain, Providencia vermicola strain CT1, through 16S rRNA analysis and biochemical tests. Under optimized conditions (30 °C, pH = 6, initial TAT concentration of 300 mg/L, and bacterial culture volume of 50 mL), strain CT1 achieved a TAT degradation percentage of 97.1%. The degradation process followed a first-order kinetic model and was primarily driven by extracellular metabolites. GC-MS analysis identified that strain CT1 degrades TAT to produce small molecules such as 3-methylbutanoic acid, ethyl acetate, and 3-iminopentan-2-one. Strain CT1 effectively degraded TAT in actual wastewater samples, achieving 95% degradation within 60 h, and significantly reduced the COD, BOD₅, and NH₄⁺-N concentrations. These findings provide theoretical guidelines for removing TAT and other macrolide antibiotic contaminants from the environment.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"749-760"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143613056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of natamycin production by combining ARTP mutagenesis with temperature control strategy development in Streptomyces gilvosporeus.
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-01 Epub Date: 2025-03-18 DOI: 10.1007/s00449-025-03145-1
Jian Xue, Wen Xiao, Yuxiu Xu, Liang Wang, Jianhua Zhang, Hongjian Zhang, Xusheng Chen
{"title":"Enhancement of natamycin production by combining ARTP mutagenesis with temperature control strategy development in Streptomyces gilvosporeus.","authors":"Jian Xue, Wen Xiao, Yuxiu Xu, Liang Wang, Jianhua Zhang, Hongjian Zhang, Xusheng Chen","doi":"10.1007/s00449-025-03145-1","DOIUrl":"10.1007/s00449-025-03145-1","url":null,"abstract":"<p><p>Natamycin, a natural antifungal compound produced by Streptomyces, possesses antibacterial activity against yeast and mold. However, its low yield hinders widespread application in the food and pharmaceutical industries. This study aims to enhance natamycin production of Streptomyces gilvosporeus through engineering strain and optimization bioprocess. A high-yield strain exhibiting robust genetic stability was bred, yielding a 19.8% increase in shake flask fermentation and a 26.3% increase in fed-batch fermentation compared to the starting strain. The influence of temperature on high-yield strains was examined separately through batch fermentation and fed-batch fermentation. Subsequently, based on comprehensive analysis of fermentation kinetic parameters, a two-stage temperature control strategy was proposed. Specifically, the temperature was maintained at 30 ℃ for the first 18 h to shorten the lag phase, followed by a reduction to 26 ℃ and maintaining this temperature until the end of fermentation. Under this strategy, the natamycin production reached 14.4 g·L<sup>-1</sup>, representing a 25.2% increase compared to constant temperature fermentation at 28 ℃. This study provided an efficient production strategy for natamycin.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"817-827"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon paper anodes decorated with TiO2 nanowires and Au nanoparticles for facilitating bacterial extracellular electron transfer.
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-01 Epub Date: 2025-03-11 DOI: 10.1007/s00449-025-03141-5
Zhixing Qiao, Xiaoyu Dong, Tong Yang, Lichen Hu, Tao Yin
{"title":"Carbon paper anodes decorated with TiO<sub>2</sub> nanowires and Au nanoparticles for facilitating bacterial extracellular electron transfer.","authors":"Zhixing Qiao, Xiaoyu Dong, Tong Yang, Lichen Hu, Tao Yin","doi":"10.1007/s00449-025-03141-5","DOIUrl":"10.1007/s00449-025-03141-5","url":null,"abstract":"<p><p>Au nanoparticles-composite TiO<sub>2</sub> nanowires (NWs) modified carbon paper (CP) anode was synthesized via the hydrothermal method. Field emission scanning electron microscopy (FESEM) images demonstrate that the modified nanocomposite electrode features a rough and bumpy surface structure. The electrochemical activities of TiO<sub>2</sub>-Au/CP and the control electrodes (TiO<sub>2</sub>-NWs/CP, Au/CP, CP) for microbial fuel cell (MFC) are investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). When using TiO<sub>2</sub>-Au/CP as a bioanode, the maximum power output density of Shewanella loihica PV-4 inoculated MFC increases by 49.7%, 26.5% and 190.6% compared with that when using TiO<sub>2</sub>-NWs/CP, Au/CP and bare CP as bioanodes, respectively. CV analysis indicates that TiO<sub>2</sub>-Au mediates direct and indirect electron transfer between the electrode and the bacteria, as evidenced by the appearance of redox peaks with mid-point potentials E<sub>m</sub> of - 0.305 V and -0.465 V, respectively. The generation of bioelectricity reveals the formation of a biofilm on the electrode surface. Furthermore, compared with the control electrodes, the MFC assembled with a TiO<sub>2</sub>-Au anode exhibits a smaller semicircle in the high-frequency region, representing a lower charge transfer resistance (R<sub>ct</sub>). The improvement in MFC performance can be attributed to the fact that the combination of TiO<sub>2</sub> and Au enhances the conductivity and electrochemical activity of the electrode, along with its good biocompatibility and large specific surface area, which are favorable for bacterial colonization. Thus, TiO<sub>2</sub>-Au/CP serves as an ideal anode material featuring simple synthesis. Additionally, its surface modifier, TiO<sub>2</sub>-Au can be extended for the modification of other base electrodes, enabling the acquisition of high-quality anodes for MFCs.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"761-769"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143596175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly efficient production of prodigiosin from corn stover hydrolysate in Serratia marcescens mutant RZ 21-6C generated by atmospheric and room‑temperature plasma mutagenesis.
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-01 Epub Date: 2025-03-19 DOI: 10.1007/s00449-025-03144-2
Zi-Ang Zhang, Meng Tang, Jing Yang, Qi-Yin Yang, Chuan-Chao Dai, Fei Chen
{"title":"Highly efficient production of prodigiosin from corn stover hydrolysate in Serratia marcescens mutant RZ 21-6C generated by atmospheric and room‑temperature plasma mutagenesis.","authors":"Zi-Ang Zhang, Meng Tang, Jing Yang, Qi-Yin Yang, Chuan-Chao Dai, Fei Chen","doi":"10.1007/s00449-025-03144-2","DOIUrl":"10.1007/s00449-025-03144-2","url":null,"abstract":"<p><p>Prodigiosin, a natural pigment mainly produced by microorganisms, has a wide range of applications in medicine, agriculture, and environmental protection. To improve the production efficiency of prodigiosin and develop a low-cost biomass carbon source to reduce the fermentation cost, we mutated Serratia marcescens strain isolated previously in our laboratory through atmospheric and room-temperature plasma (ARTP) mutation breeding and obtained a mutant strain RZ 21-6C with a high pigment production and high genetic stability. The fermentation performance analysis of different carbon sources showed that the mutant strain not only significantly improved the conversion of conventional carbon source - sucrose, but also synthesized prodigiosin from xylose and glucose. In particular, the utilization efficiency of xylose was very high. Based on the above characteristics, low-cost biomass carbon source corn stover hydrolysate with xylose as the main component was developed for the production of prodigiosin. The highest concentration of prodigiosin in fed-batch fermentation reached 16.17 g.L<sup>-1</sup>, with a production efficiency of 0.12 g.L<sup>-1</sup>.h<sup>-1</sup>, and a total sugar conversion rate of 20.21%. The transmission electron microscopy (TEM) observation of strains and of cell membrane components and permeability showed significant changes in the physiological state of the mutant strain to facilitate pigment efflux and substrate pumping. Finally, combined with the physiological data and proteomic results, the underlying mechanism of efficient prodigiosin production by RZ 21-6C was explained from the perspective of phenotypic changes, prodigiosin synthesis, membrane transport, glycogen utilization, and primary metabolism. In this study, a S. marcescens RZ 21-6C strain with excellent characteristics was obtained by modern physical mutagenesis for the biosynthesis of prodigiosin using the hydrolysate of corn stover, an agricultural waste, as a fermentation substrate, which provides an important technological support for the renewable biorefinery of prodigiosin bio-based products.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"799-816"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143662155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信