Bioprocess and Biosystems Engineering最新文献

筛选
英文 中文
Assessing the performance of a disposable electrochemical biofilm test kit on monitoring drainage sludge biofilm corrosion and its biocide treatment. 评价一次性电化学生物膜检测试剂盒监测排水污泥生物膜腐蚀及其杀菌剂处理的性能。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-08-01 Epub Date: 2025-05-05 DOI: 10.1007/s00449-025-03173-x
Lingjun Xu, Chris Gu, Shaohua Wang
{"title":"Assessing the performance of a disposable electrochemical biofilm test kit on monitoring drainage sludge biofilm corrosion and its biocide treatment.","authors":"Lingjun Xu, Chris Gu, Shaohua Wang","doi":"10.1007/s00449-025-03173-x","DOIUrl":"10.1007/s00449-025-03173-x","url":null,"abstract":"<p><p>Drainage sludge is abundant with corrosive microbes which can contribute to soil corrosion of buried pipelines. In this work, the microbiologically influenced corrosion (MIC) of a drainage sludge biofilm against X65 carbon steel was confirmed by significant uniform corrosion (0.03 mm/a uniform corrosion rate) and more severe pitting corrosion (18% greater) on X65 coupons with nutrient enrichment without venting at 37 ℃ compared to the aerobic sludge at room temperature. A new biofilm/MIC test kit was employed to assess the aerobic sludge biofilm, and it was determined to be mildly corrosive against carbon steel after incubating 5 mL of aerobic sludge at room temperature for 7 d in the 10 mL biofilm test kit vial. Tetrakis-hydroxymethyl phosphonium sulfate (THPS), a green biocide was also tested in the biofilm/MIC test kit for its mitigation of the aerobic sludge biofilm and its corrosion against the X65 carbon steel working electrode. The biofilm test kit successfully monitored the sludge biofilm's sanitization efficacy. It was found that 100 ppm THPS was effective in inhibiting biofilm growth, and 400 ppm THPS in treating pre-established sludge biofilm by achieving 10% corrosion rate reduction. Thus, the biofilm/MIC test kit was found to be sensitive in detecting MIC and can be used as a convenient tool in assessing biofilm corrosivity and its mitigation efficacy.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1255-1266"},"PeriodicalIF":3.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234593/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143975409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced production of microbial levulinic acid through deletion of the levulinic acid transcriptional regulator (lvaR) in engineered Pseudomonas putida KT2440. 通过删除工程恶臭假单胞菌KT2440中乙酰丙酸转录调控因子(lvaR),提高了微生物乙酰丙酸的产量。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-08-01 Epub Date: 2025-05-19 DOI: 10.1007/s00449-025-03175-9
Hyun Jin Kim, Byung Chan Kim, Gaeun Lim, Yebin Han, Yunhee Jeong, Hee Taek Kim, Woo-Young Jeon, Jungoh Ahn, Shashi Kant Bhatia, Yung-Hun Yang
{"title":"Enhanced production of microbial levulinic acid through deletion of the levulinic acid transcriptional regulator (lvaR) in engineered Pseudomonas putida KT2440.","authors":"Hyun Jin Kim, Byung Chan Kim, Gaeun Lim, Yebin Han, Yunhee Jeong, Hee Taek Kim, Woo-Young Jeon, Jungoh Ahn, Shashi Kant Bhatia, Yung-Hun Yang","doi":"10.1007/s00449-025-03175-9","DOIUrl":"10.1007/s00449-025-03175-9","url":null,"abstract":"<p><p>Levulinic acid (LA) is a platform compound regarded as a promising organic intermediate for the synthesis of various chemicals such as fuel additives, plasticizers, solvents, and pharmaceuticals. Traditionally, LA is produced via acid-catalyzed dehydration and hydrolysis of lignocellulosic biomass, but this process involves challenges such as high temperatures and pressures, the use of strong acids, byproducts formation, and limitations in recovery and purification. To provide an alternative for chemical synthesis, we previously designed an integrated process to produce LA from glucose using genetically engineered Pseudomonas putida KT2440. However, as the consumption of the produced LA could not be completely prevented, its overall yield was limited. Therefore, in this study we constructed P. putida strains with additional knock-out of the lva operon genes (lvaAB, lvaE, and lvaR) in a pcaIJ knock-out strain, and introduced the aroG, asbF, and adc genes to design an LA production pathway. The pcaIJ, lvaR double knock-out strain P. putida HP205 produced 20.42 mM of LA from glycerol, and culture condition including temperature, glucose concentration, and nitrogen source were optimized. Under optimal conditions, P. putida HP205 produced 73.9 mM (8.58 g/L) LA in fed-batch fermentation. When crude glycerol was used as the substrate, both LA production and cell growth were enhanced. This study presents the impact of the LA transcriptional regulator and demonstrates a strategy for enhanced LA production in P. putida.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1281-1294"},"PeriodicalIF":3.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144092724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative bacterial consortia for simulated dairy wastewater treatment: improving COD removal efficiency. 模拟乳品废水处理的创新菌群:提高COD去除效率。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-07-16 DOI: 10.1007/s00449-025-03202-9
Manjiri Patil, Pranav Kshirsagar, Prashant Dhakephalkar, Suneeti Gore, Vikram Lanjekar
{"title":"Innovative bacterial consortia for simulated dairy wastewater treatment: improving COD removal efficiency.","authors":"Manjiri Patil, Pranav Kshirsagar, Prashant Dhakephalkar, Suneeti Gore, Vikram Lanjekar","doi":"10.1007/s00449-025-03202-9","DOIUrl":"https://doi.org/10.1007/s00449-025-03202-9","url":null,"abstract":"<p><p>Dairy industry generates wastewater characterized by organic components, predominantly composed of proteins and fats, which can be effectively treated through biological processes. The present study aims to develop a bacterial consortium for bio-augmentation to enhance the treatment of simulated dairy wastewater. A total of 75 bacterial isolates were obtained using direct (DI) and enrichment-isolation (EI) methods. Among these, four strains exhibiting the highest proteolytic and lipolytic activities within 24 h were selected for further investigations. The isolates were screened based on their extracellular enzyme activities (proteinase and lipase), as well as their maximum lipolytic (0.3-0.7 mm/h) and proteolytic activity (0.67-0.83 mm/h) by a novel approach of rate of diffusion on TA and MSMA, respectively. The selected strains were identified by 16S rRNA gene sequencing as Massilia (DSSC1), Brevibacillus (ENAT1), Pseudomonas (ENOG5), and Lysinibacillus (ETOG2). The biodegradation potential of individual strains and their consortium was assessed through COD reduction in simulated dairy wastewater. The individual bacterial strains achieved COD reductions from an initial concentration of 3.82 g/L to 2.95, 2.81, 2.48, and 2.89 g/L. In contrast, bio-augmentation with the bacterial consortia reduced COD to 2.19 g/L, resulting in a 26-86% higher reduction compared to the individual strains. This study presents the first report on the use of a novel approach of diffusion-based assay to develop an effective and innovative bacterial consortium for efficient dairy wastewater treatment. These findings highlight the potential of this approach toward enhancing biodegradation efficiency and advancing sustainable wastewater management practice.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144641753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma substitute combination enhances in vitro expansion of blood cells by modulating redox status and signaling pathways. 血浆替代品组合通过调节氧化还原状态和信号通路来增强血细胞的体外扩增。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-07-16 DOI: 10.1007/s00449-025-03204-7
Guofeng Zhang, Ruisheng Xu, Huimin Huang, Yuanyuan Zhao, Wen-Song Tan, Haibo Cai
{"title":"Plasma substitute combination enhances in vitro expansion of blood cells by modulating redox status and signaling pathways.","authors":"Guofeng Zhang, Ruisheng Xu, Huimin Huang, Yuanyuan Zhao, Wen-Song Tan, Haibo Cai","doi":"10.1007/s00449-025-03204-7","DOIUrl":"https://doi.org/10.1007/s00449-025-03204-7","url":null,"abstract":"<p><p>Plasma is the primary microenvironment, where red blood cells (RBCs) survive and function, with its components playing crucial roles in erythroid expansion and RBC functionality. This study aims to elucidate the relationship between the combination of critical components in plasma and the expansion and cell state of erythroid cells. Using Design of Experiment (DOE) methods, we screened and optimized the concentrations of plasma components that significantly impact the in vitro expansion of TF-1 cells. We identified a plasma substitute combination composed of hypoxanthine, dexamethasone, and vitamin B complex and, significantly enhancing TF-1 cell expansion in the serum-free medium supplemented with bovine serum albumin by 1012.41 folds, compared to 327.50 folds in the negative control. In addition, the proportion of CD34<sup>+</sup> cells in the medium supplemented with this combination was 54.77%, comparable to the negative control, while hemoglobin expression was 0.64 pg/cell, significantly higher than that of the negative control. Given that various components of this formulation affect intracellular redox status and signaling pathway activation, we further investigated these aspects. Cells cultured with this combination showed improved mitochondrial membrane potential, lower intracellular reactive oxygen species (ROS) levels, reduced apoptosis rates, and enhanced STAT5 phosphorylation. These results indicated that the plasma substitute combination improves intracellular redox status and activates the JAK/STAT signaling pathway in TF-1 cells. This study provides valuable insights for developing serum-free media for the in vitro expansion of erythroid cells.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144641754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of precursor MicroRNA (pre-miRNA) as a powerful tool for robust CHO production cell line platform development. 评估前体MicroRNA (pre-miRNA)作为强大的CHO生产细胞系平台开发的有力工具。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-07-15 DOI: 10.1007/s00449-025-03200-x
Li Gao, Xiaohong Li, Mengxin Zhang, Bin Li, Xiuxiu Miao, Chao Yu, Wei Guo, Cuiqiao Zhang, Xiangyuan He, Kaisheng Huang, Zichen Qian
{"title":"Evaluation of precursor MicroRNA (pre-miRNA) as a powerful tool for robust CHO production cell line platform development.","authors":"Li Gao, Xiaohong Li, Mengxin Zhang, Bin Li, Xiuxiu Miao, Chao Yu, Wei Guo, Cuiqiao Zhang, Xiangyuan He, Kaisheng Huang, Zichen Qian","doi":"10.1007/s00449-025-03200-x","DOIUrl":"https://doi.org/10.1007/s00449-025-03200-x","url":null,"abstract":"<p><p>Chinese hamster ovary (CHO) cells are the most widely used host for the commercial production of recombinant therapeutic proteins. The rapidly growing demand for large quantities of biologics at controllable cost-of-goods requires continuous cell engineering and process optimization of the CHO host cells. MicroRNAs (miRNAs) have been shown to enhance recombinant protein production in CHO cells. While studies have demonstrated that transient overexpression of certain miRNAs can increase recombinant protein yields, systematic comparisons of different miRNA overexpression forms (primary, precursor, and mature) remain limited. Furthermore, their application in stable cell line development, particularly for difficult-to-express proteins, has yet to be thoroughly explored. This study evaluated three miRNA overexpression strategies: primary miRNAs (pri-miRNAs), precursor miRNAs (pre-miRNAs), and flanked mature miRNAs (incorporating the mature sequence plus reverse complementary and loop sequences), to enhance the expression of difficult-to-express proteins in stable CHO cell lines. Notably, these miRNA constructs were built-in with the gene of interest (GOI) on the same vector to simplify stable cell line generation. Our results indicate that the pre-miRNA overexpression strategy is the most effective. Overexpression of premiR-92a, premiR-200a, premiR-483, and premiR-106b significantly increased the expression level of a bispecific antibody (BsAb) and an Fc-fusion protein without compromising product quality. Further clone evaluation of the premiR-92a and premiR-483 overexpression groups revealed an improved proportion of high-productivity and stable clones. In conclusion, this study demonstrates that integrating pre-miRNA expression cassettes into therapeutic protein vectors for co-expression is a valuable and effective engineering strategy for developing a robust stable CHO expression platform.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144641752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature-field multiscale regulated 3D PVA-PPy conductive hydrogel for enhanced bio-electrocatalytic performance. 温度场多尺度调节三维PVA-PPy导电水凝胶增强生物电催化性能。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-07-13 DOI: 10.1007/s00449-025-03201-w
Xiaofei Liu, Xingshuang Liu, Qing Wen, Ye Chen
{"title":"Temperature-field multiscale regulated 3D PVA-PPy conductive hydrogel for enhanced bio-electrocatalytic performance.","authors":"Xiaofei Liu, Xingshuang Liu, Qing Wen, Ye Chen","doi":"10.1007/s00449-025-03201-w","DOIUrl":"https://doi.org/10.1007/s00449-025-03201-w","url":null,"abstract":"<p><p>Microbial fuel cells (MFCs) have been proven to be a green technology for solving energy crises, but their low power density limits their large-scale practical applications. In this paper, a three-dimensional porous composite hydrogel polyvinyl alcohol/polypyrrole (PVA/PPy) with good biocompatibility was prepared by temperature-field regulation via alternating cycles between low temperature (- 20 °C) and room temperature (25 °C) and used as the anode in MFC. The three-dimensional network structure of PPy nanospheres compressed by ice crystal stress exhibited excellent charge conduction capability and ion transport performance, which significantly improved the interfacial charge transfer efficiency of PVA/PPy-5 bioanode. Besides, the addition of PVA endowed the hydrogel with mechanical properties to resist the external forces. As the results, the maximum power density of PVA/PPy-5 MFC was 1521.04 mW/m<sup>2</sup>, which was 1.76, 2.16 and 8.32 times higher than that of PVA/PPy-0, PPy-5 and carbon felt MFCs, respectively. Such enhancement could be attributed to the combined effects of three factors, including the FT process, biocompatibility of PVA, and bioelectrocatalytic activity of polypyrrole. The high-throughput sequencing technology revealed that the PVA/PPy-5 hydrogel anode, which facilitated the selective enrichment of electrogenic microbes, played a crucial role on the regulation of functional biofilm. This work provides a new approach for developing high-performance electrodes for MFC.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144616134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing choline oxidase immobilization on Co3O4/rGO nanohybrid surface as a high-performance biosensor for diazinon detection. Co3O4/氧化石墨烯纳米杂化表面固定胆碱氧化酶作为检测重氮肼的高性能生物传感器。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-07-13 DOI: 10.1007/s00449-025-03206-5
Seyedeh Reyhaneh Jahandideh-Roudsari, Mostafa Shourian, Ahmad Homaei
{"title":"Developing choline oxidase immobilization on Co<sub>3</sub>O<sub>4</sub>/rGO nanohybrid surface as a high-performance biosensor for diazinon detection.","authors":"Seyedeh Reyhaneh Jahandideh-Roudsari, Mostafa Shourian, Ahmad Homaei","doi":"10.1007/s00449-025-03206-5","DOIUrl":"https://doi.org/10.1007/s00449-025-03206-5","url":null,"abstract":"<p><p>Co<sub>3</sub>O<sub>4</sub>/rGO nanoparticles were used to modify a glassy carbon electrode (GCE), where reduced graphene oxide (rGO) serves as an intermediate between graphene and graphene oxide, featuring a carbon framework enriched with oxygen-containing hydrophilic functional groups. The structural and morphological characterization of the modified electrode was carried out using Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM-EDS). Electrochemical performance was evaluated through cyclic voltammetry (CV) and chronoamperometry, revealing effective electron transfer between the nanoparticles and immobilized choline oxidase (ChOx). The apparent heterogeneous electron transfer rate constants (K<sub>s</sub>) were calculated as 0.99 s<sup>-1</sup> for Co<sub>3</sub>O<sub>4</sub>/rGO and 5.89 s<sup>-1</sup> for ChOx/Co<sub>3</sub>O<sub>4</sub>/rGO. The biosensor demonstrated excellent analytical performance for choline detection, with a linear response range of 5-60 µM, a sensitivity of 0.0216 µA µM<sup>-1</sup>, and a detection limit of 0.811 µM. Notably, the developed biosensor also exhibited a strong electrochemical response to the organophosphorus pesticide diazinon, indicating its potential for environmental monitoring. Given that diazinon is a widely used organophosphorus pesticide with high toxicity to humans and the environment, its sensitive detection is critical for monitoring and controlling pesticide contamination.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144616133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A transposon-based transient transfection system in CHO-K1 cells enables quality prediction of stable cell line proteins. CHO-K1细胞中基于转座子的瞬时转染系统能够对稳定的细胞系蛋白进行质量预测。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-07-12 DOI: 10.1007/s00449-025-03198-2
Xi Chen, Kang Zhang, Zhen Sun, Yan Fang, Jie Chen, Congcong Jin, Lani Shi, Yan Wang
{"title":"A transposon-based transient transfection system in CHO-K1 cells enables quality prediction of stable cell line proteins.","authors":"Xi Chen, Kang Zhang, Zhen Sun, Yan Fang, Jie Chen, Congcong Jin, Lani Shi, Yan Wang","doi":"10.1007/s00449-025-03198-2","DOIUrl":"https://doi.org/10.1007/s00449-025-03198-2","url":null,"abstract":"<p><p>In biologics drug discovery, transient protein expression is widely used to rapidly produce biologics, thereby accelerating the identification of lead candidates. However, the accuracy and consistency of predicting further product quality in large-scale production needs to be considered, especially with respect to physicochemical properties and posttranslational modifications. With this in mind, a transient expression system utilizing Chinese hamster ovary K1 (CHO-K1) has been established, which integrates high expression capability with quality profiles similar to those of the protein produced by stable cell lines. A well-designed vector containing transposon elements overcomes the blindness of random integration and ensures the sustained viability of cells and production capability, thus addressing the critical bottlenecks in classical transiently transfected workflows. Combined with the optimization of various transfection parameters, the customized platform achieved a titer over 1.5 g/L in the production of a bispecific antibody while maintaining a proportion of fragments, aggregates and glycosylation patterns that are comparable to those of the stable cell line protein. More importantly, this platform also demonstrated reliability in terms of quality across diverse antibody formats. This innovative protein expression platform bridges the gap between transient and stable expression on the basis of CHO-K1, ensuring the consistency of host cell types throughout the antibody discovery and development process.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144616053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in phyto- and microorganisms-mediated synthesis of copper nanoparticles and their emerging applications in healthcare, environment, agriculture and food industry. 植物和微生物介导的铜纳米颗粒合成的最新进展及其在医疗保健、环境、农业和食品工业中的新兴应用。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-07-09 DOI: 10.1007/s00449-025-03196-4
Drashti Tank, Anjali Bishnoi, Savita Goswami, Nikita J Ambegaonkar, Pratik Patel, Mamta Chahar, Sarita Khaturia, Virendra Kumar Yadav
{"title":"Recent advances in phyto- and microorganisms-mediated synthesis of copper nanoparticles and their emerging applications in healthcare, environment, agriculture and food industry.","authors":"Drashti Tank, Anjali Bishnoi, Savita Goswami, Nikita J Ambegaonkar, Pratik Patel, Mamta Chahar, Sarita Khaturia, Virendra Kumar Yadav","doi":"10.1007/s00449-025-03196-4","DOIUrl":"https://doi.org/10.1007/s00449-025-03196-4","url":null,"abstract":"<p><p>Over the past few decades, the study of novel methods to control the size and morphology of inorganic and organic materials has been the focus of current research. Recently, green synthesis approaches for the synthesis of nanoparticles have garnered significant attention due to their use of eco-friendly and non-toxic substances. These methods are simple, cost-effective, and help in synthesizing thermally and chemically stable nanoparticles. This review article illustrates the detailed study of the utilization of bio-templates, such as parts of plants (e.g., leaves, seeds, etc.), bacteria, viruses, fungi, algae, etc. These biological systems act as reducing and stabilizing agents, which help in the formation of copper nanoparticles (CuNPs) with controlled morphology and size. Copper metal was selected due to its great utility, high biocompatibility, and lower side effects. Here, the authors have reviewed the mechanism of formation of CuNPs by bacteria, algae, fungi, and plants, in addition to the characterization of CuNPs. Further emphasis has been given on the multifaceted application of green CuNPs in healthcare (antibacterial, anticancer, etc.), sensing, environmental remediation (dye removal and pollutant removal), and agriculture. This review also identifies current challenges and outlines the future scope of CuNPs in various emerging fields.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144590410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrodynamic cavitation assisted recovery of intracellular polyhydroxyalkanoates. 水动力空化辅助细胞内聚羟基烷酸酯的回收。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-07-06 DOI: 10.1007/s00449-025-03197-3
Tülin Yilmaz Nayir, Yusuf Küçükağa, Serdar Kara
{"title":"Hydrodynamic cavitation assisted recovery of intracellular polyhydroxyalkanoates.","authors":"Tülin Yilmaz Nayir, Yusuf Küçükağa, Serdar Kara","doi":"10.1007/s00449-025-03197-3","DOIUrl":"https://doi.org/10.1007/s00449-025-03197-3","url":null,"abstract":"<p><p>In this study, the hydrodynamic cavitation (HC) process was adopted for the recovery of intracellular biopolymer, namely polyhydroxyalkanoates (PHAs), from mixed microbial culture (MMC). To investigate the potential and performance of HC process, two cavitation devices (orifice-1 and orifice-17) were employed. The impact of biomass concentration, orifice type and pressure differential on recovery yield was assessed. The HC-assisted PHA recovery protocol introduced a novel technique that uses HC for cell disruption and a solvent for biopolymer separation. The results demonstrate the feasibility of obtaining biopolymer within a short operation time (5 min), achieving 72% process efficiency using the HC-assisted recovery procedure. The biopolymer recovered via HC at optimal conditions exhibited a purity of 71.4%, indicating effective polyhydroxybutyrate (PHB) isolation. Its molecular weight of 0.15 × 10⁶ g/mol aligns with typical PHB ranges, suggesting its suitability for various applications. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed compatibility with commercial PHB. Thermal degradation profiles showed slightly lower stability compared to commercial PHB, with a 10% mass loss at 243.21 °C and a maximum degradation temperature of 262.12 °C. Despite these minor differences, HC presents a promising, greener method for PHA recovery, offering potential applications in sustainable industries.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144566966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信