Bioprocess and Biosystems Engineering最新文献

筛选
英文 中文
Investigation of antioxidant, antibacterial, anticancer and wound healing properties of eco-friendly synthesized copper oxide nanoparticles from Plumeria rubra leaf extract. 黄花鸡蛋花叶提取物合成的环保氧化铜纳米颗粒的抗氧化、抗菌、抗癌和伤口愈合性能研究。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-21 DOI: 10.1007/s00449-025-03176-8
Annapoorani Angusamy, Subramanian Palanisamy, Sangeetha Ravi, Manikandan Kumaresan, Sonaimuthu Mohandoss, SangGuan You, Manikandan Ramar
{"title":"Investigation of antioxidant, antibacterial, anticancer and wound healing properties of eco-friendly synthesized copper oxide nanoparticles from Plumeria rubra leaf extract.","authors":"Annapoorani Angusamy, Subramanian Palanisamy, Sangeetha Ravi, Manikandan Kumaresan, Sonaimuthu Mohandoss, SangGuan You, Manikandan Ramar","doi":"10.1007/s00449-025-03176-8","DOIUrl":"https://doi.org/10.1007/s00449-025-03176-8","url":null,"abstract":"<p><p>Plants serve as a rich source of bioactive agents and coupling them with carriers using nanotechnology has recently become an effective therapeutic approach in pharmacognosy. Metal oxides, especially copper oxide (CuO), have been employed in synthesizing nanoparticles due to their efficient reducing properties. The purpose of this work was to examine the physicochemical, antioxidant, antibacterial, anticancer, and wound healing abilities of copper oxide nanoparticles (CuONPs) synthesized using Plumeria rubra leaf extract. FTIR, XRD, FESEM, EDX, AFM, and UV-vis spectroscopy were used to confirm the formation of CuONPs, and the results showed that they were spherical in shape and 35 nm in size. DPPH and nitric oxide antioxidant assays revealed that they possess effective free radical scavenging ability. CuONPs showed bactericidal activity against human pathogenic bacteria. The anticancer effect of CuONPs was assessed on the Neuro-2a (N2a) neuroblastoma cells. Both P. rubra leaf extract and CuONPs exhibited dose-dependent cytotoxicity with morphological distortions and apoptosis, along with a loss of membrane integrity. In vivo analysis of CuONPs for their wound healing ability in Wistar albino rats showed a better wound closure percentage compared to that of the control animals. Based on our findings, CuONPs may be applied as a potential therapeutic agent in developing treatments for a spectrum of various diseases.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144109287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic and bioactive functionalization of bioinks for 3D bioprinting. 用于3D生物打印的生物墨水的遗传和生物活性功能化。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-20 DOI: 10.1007/s00449-025-03180-y
Pawan Kumar, Jitender Sharma, Ravinder Kumar, Jan Najser, Jaroslav Frantik, Nagaraju Sunnam, Anil Sindhu, Seepana Praveenkumar
{"title":"Genetic and bioactive functionalization of bioinks for 3D bioprinting.","authors":"Pawan Kumar, Jitender Sharma, Ravinder Kumar, Jan Najser, Jaroslav Frantik, Nagaraju Sunnam, Anil Sindhu, Seepana Praveenkumar","doi":"10.1007/s00449-025-03180-y","DOIUrl":"https://doi.org/10.1007/s00449-025-03180-y","url":null,"abstract":"<p><p>3D bioprinting is revolutionizing tissue engineering and regenerative medicine by enabling the precise fabrication of biologically functional constructs. At its core, the success of 3D bioprinting hinges on the development of bioinks, hydrogel-based materials that support cellular viability, proliferation, and differentiation. However, conventional bioinks face limitations in mechanical strength, biological activity, and customization. Recent advancements in genetic engineering have addressed these challenges by enhancing the properties of bioinks through genetic modifications. These innovations allow the integration of stimuli-responsive elements, bioactive molecules, and extracellular matrix (ECM) components, significantly improving the mechanical integrity, biocompatibility, and functional adaptability of bioinks. This review explores the state-of-the-art genetic approaches to bioink development, emphasizing microbial engineering, genetic functionalization, and the encapsulation of growth factors. It highlights the transformative potential of genetically modified bioinks in various applications, including bone and cartilage regeneration, cardiac and liver tissue engineering, neural tissue reconstruction, and vascularization. While these advances hold promise for personalized and adaptive therapeutic solutions, challenges in scalability, reproducibility, and integration with multi-material systems persist. By bridging genetics and bioprinting, this interdisciplinary field paves the way for sophisticated constructs and innovative therapies in tissue engineering and regenerative medicine.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144109283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced production of microbial levulinic acid through deletion of the levulinic acid transcriptional regulator (lvaR) in engineered Pseudomonas putida KT2440. 通过删除工程恶臭假单胞菌KT2440中乙酰丙酸转录调控因子(lvaR),提高了微生物乙酰丙酸的产量。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-19 DOI: 10.1007/s00449-025-03175-9
Hyun Jin Kim, Byung Chan Kim, Gaeun Lim, Yebin Han, Yunhee Jeong, Hee Taek Kim, Woo-Young Jeon, Jungoh Ahn, Shashi Kant Bhatia, Yung-Hun Yang
{"title":"Enhanced production of microbial levulinic acid through deletion of the levulinic acid transcriptional regulator (lvaR) in engineered Pseudomonas putida KT2440.","authors":"Hyun Jin Kim, Byung Chan Kim, Gaeun Lim, Yebin Han, Yunhee Jeong, Hee Taek Kim, Woo-Young Jeon, Jungoh Ahn, Shashi Kant Bhatia, Yung-Hun Yang","doi":"10.1007/s00449-025-03175-9","DOIUrl":"https://doi.org/10.1007/s00449-025-03175-9","url":null,"abstract":"<p><p>Levulinic acid (LA) is a platform compound regarded as a promising organic intermediate for the synthesis of various chemicals such as fuel additives, plasticizers, solvents, and pharmaceuticals. Traditionally, LA is produced via acid-catalyzed dehydration and hydrolysis of lignocellulosic biomass, but this process involves challenges such as high temperatures and pressures, the use of strong acids, byproducts formation, and limitations in recovery and purification. To provide an alternative for chemical synthesis, we previously designed an integrated process to produce LA from glucose using genetically engineered Pseudomonas putida KT2440. However, as the consumption of the produced LA could not be completely prevented, its overall yield was limited. Therefore, in this study we constructed P. putida strains with additional knock-out of the lva operon genes (lvaAB, lvaE, and lvaR) in a pcaIJ knock-out strain, and introduced the aroG, asbF, and adc genes to design an LA production pathway. The pcaIJ, lvaR double knock-out strain P. putida HP205 produced 20.42 mM of LA from glycerol, and culture condition including temperature, glucose concentration, and nitrogen source were optimized. Under optimal conditions, P. putida HP205 produced 73.9 mM (8.58 g/L) LA in fed-batch fermentation. When crude glycerol was used as the substrate, both LA production and cell growth were enhanced. This study presents the impact of the LA transcriptional regulator and demonstrates a strategy for enhanced LA production in P. putida.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144092724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of the biochemical and kinetic properties of Candida antarctica lipase immobilized on magnetized poly(styrene-co-ethylene glycol dimethacrylate) and the development of a mathematical model for emollient ester synthesis. 研究了磁性聚苯乙烯-二甲基丙烯酸乙二醇酯固定化南极念珠菌脂肪酶的生化和动力学性质,建立了软化剂酯合成的数学模型。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-08 DOI: 10.1007/s00449-025-03174-w
Gabrielle P Assis, Amanda B S Rangel, Vinicius S Sampaio, Gian F C Anjos, Mateus V C Silva, Leandro G Aguiar, Larissa Freitas
{"title":"Study of the biochemical and kinetic properties of Candida antarctica lipase immobilized on magnetized poly(styrene-co-ethylene glycol dimethacrylate) and the development of a mathematical model for emollient ester synthesis.","authors":"Gabrielle P Assis, Amanda B S Rangel, Vinicius S Sampaio, Gian F C Anjos, Mateus V C Silva, Leandro G Aguiar, Larissa Freitas","doi":"10.1007/s00449-025-03174-w","DOIUrl":"https://doi.org/10.1007/s00449-025-03174-w","url":null,"abstract":"<p><p>The present study aimed to develop a biocatalyst through the immobilization of Candida antarctica lipase B (CALB) via physical adsorption onto magnetized poly(styrene-co-ethylene glycol dimethacrylate) (STY-EGDMA-M). Biochemical property characterization, apparent kinetic parameter determination, and thermal stability assessment were conducted using a methodology developed based on the hydrolysis of the ester methyl butyrate. The results demonstrated that immobilization expanded the enzyme's optimal pH range, with the best performance observed at pH 7.5 and 8, reaching approximately 730 U g⁻<sup>1</sup>. Additionally, increasing the temperature to 55°C led to an enhancement in the biocatalyst's hydrolytic activity, achieving a maximum of 916.24 U g⁻<sup>1</sup>. Kinetic parameter analysis yielded values of 321.38 ± 6.31 mM for Km and 4322.46± 75.73 U g⁻<sup>1</sup> for Vmax. Thermal stability tests were conducted at 55°C, revealing that 83% of the biocatalyst's initial activity was retained after 24 h of exposure. Furthermore, the biocatalyst's performance in the synthesis of emollient esters (butyl oleate, 2-ethylhexyl oleate, and octyl oleate) via solvent-free esterification was evaluated. The synthesis of emollient esters demonstrated conversions exceeding 55% for octyl oleate and 2-ethylhexyl oleate at 50 and 55°C, whereas the maximum conversion for butyl oleate was 42% at 55°C. Among the bioprocesses evaluated, the synthesis of octyl oleate was selected for kinetic modeling using the ping-pong bi-bi mechanism, with five different parameter arrangements constructed. The model with the lowest corrected Akaike information criterion (AIC<sub>C</sub> = 129.649) was selected. The findings obtained in this work open new avenues for biotechnological applications, reinforcing the relevance of the biocatalyst as a promising tool for industrial processes and scientific research. Additionally, this study provides an alternative methodology for the biochemical characterization of immobilized lipases and employs mathematical modeling to enhance the kinetic understanding of enzymatic reactions conducted at different temperatures.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143968117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the performance of a disposable electrochemical biofilm test kit on monitoring drainage sludge biofilm corrosion and its biocide treatment. 评价一次性电化学生物膜检测试剂盒监测排水污泥生物膜腐蚀及其杀菌剂处理的性能。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-05 DOI: 10.1007/s00449-025-03173-x
Lingjun Xu, Chris Gu, Shaohua Wang
{"title":"Assessing the performance of a disposable electrochemical biofilm test kit on monitoring drainage sludge biofilm corrosion and its biocide treatment.","authors":"Lingjun Xu, Chris Gu, Shaohua Wang","doi":"10.1007/s00449-025-03173-x","DOIUrl":"https://doi.org/10.1007/s00449-025-03173-x","url":null,"abstract":"<p><p>Drainage sludge is abundant with corrosive microbes which can contribute to soil corrosion of buried pipelines. In this work, the microbiologically influenced corrosion (MIC) of a drainage sludge biofilm against X65 carbon steel was confirmed by significant uniform corrosion (0.03 mm/a uniform corrosion rate) and more severe pitting corrosion (18% greater) on X65 coupons with nutrient enrichment without venting at 37 ℃ compared to the aerobic sludge at room temperature. A new biofilm/MIC test kit was employed to assess the aerobic sludge biofilm, and it was determined to be mildly corrosive against carbon steel after incubating 5 mL of aerobic sludge at room temperature for 7 d in the 10 mL biofilm test kit vial. Tetrakis-hydroxymethyl phosphonium sulfate (THPS), a green biocide was also tested in the biofilm/MIC test kit for its mitigation of the aerobic sludge biofilm and its corrosion against the X65 carbon steel working electrode. The biofilm test kit successfully monitored the sludge biofilm's sanitization efficacy. It was found that 100 ppm THPS was effective in inhibiting biofilm growth, and 400 ppm THPS in treating pre-established sludge biofilm by achieving 10% corrosion rate reduction. Thus, the biofilm/MIC test kit was found to be sensitive in detecting MIC and can be used as a convenient tool in assessing biofilm corrosivity and its mitigation efficacy.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143975409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-strain synergistic fermentation of waste biomass with bacterial cellulose fermentation wastewater to prepare sustainable detergents. 废生物质与细菌纤维素发酵废水多菌种协同发酵制备可持续洗涤剂。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-05 DOI: 10.1007/s00449-025-03172-y
Shuangfei Zhang, Jin Xu
{"title":"Multi-strain synergistic fermentation of waste biomass with bacterial cellulose fermentation wastewater to prepare sustainable detergents.","authors":"Shuangfei Zhang, Jin Xu","doi":"10.1007/s00449-025-03172-y","DOIUrl":"https://doi.org/10.1007/s00449-025-03172-y","url":null,"abstract":"<p><p>Synthetic surfactants threaten the environment and public health due to their difficult degradation and high toxicity, creating a need for low-energy, high-efficiency green alternatives. Preparing natural surfactants is often expensive, inefficient, and complex, while the resource utilization of bacterial cellulose (BC) fermentation wastewater is still tricky. In this study, waste biomass, including pineapple peel and Sapindus mukorossi Gaertn., was combined with BC fermentation wastewater using synergistic fermentation by Saccharomyces cerevisiae, Lactobacillus sp., and Acetobacter sp. to extract triterpene saponins and proteases. This process was used to prepare green detergents enriched with surface-active substances. The results showed that after 10 days of fermentation, the saponin extraction efficiency reached 84.29%, significantly outperforming traditional methods such as ultrasound-assisted alcoholic extraction (16.17%), ultrasound-water immersion (19.00%), double extraction (31.72%), and cellulase-assisted extraction (38.98%). Protease activity reached 36.92 ± 0.20 U/mg. The fermentation broth reduced surface tension by 36.95 mN/m compared to pure water, which improved emulsification and dispersion. It exhibited high surface activity and foam stability with a low critical micelle concentration (CMC) of 0.163 ± 0.01 mg/mL. Green detergents showed a 20.71-45.87% higher efficiency than synthetic detergents in removing carbon black oil (90.38%), sebum (100%), and protein stains (89%). Saponins contributed to this advantage by reducing surface tension (P ≤ 0.01) and enhancing wettability (P ≤ 0.05). This study provides a sustainable new solution for the high-value utilization of waste biomass and BC fermentation wastewater and exhibits the broad prospects of green detergents for environmental and industrial applications.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143973596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental bioremediation of pharmaceutical residues: microbial processes and technological innovations: a review. 药物残留的环境生物修复:微生物过程和技术创新:综述。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-01 Epub Date: 2025-01-06 DOI: 10.1007/s00449-024-03125-x
Upeksha Gayangani Jayasekara, Tony Hadibarata, Dwi Hindarti, Budi Kurniawan, Mohammad Noor Hazwan Jusoh, Paran Gani, Inn Shi Tan, Adhi Yuniarto, Rubiyatno, Mohd Hairul Bin Khamidun
{"title":"Environmental bioremediation of pharmaceutical residues: microbial processes and technological innovations: a review.","authors":"Upeksha Gayangani Jayasekara, Tony Hadibarata, Dwi Hindarti, Budi Kurniawan, Mohammad Noor Hazwan Jusoh, Paran Gani, Inn Shi Tan, Adhi Yuniarto, Rubiyatno, Mohd Hairul Bin Khamidun","doi":"10.1007/s00449-024-03125-x","DOIUrl":"10.1007/s00449-024-03125-x","url":null,"abstract":"<p><p>The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a significant concern due to their persistence, bioaccumulation potential in biota, and diverse implications for human health and wildlife. This review provides an overview of the current state-of-the-art in environmental bioremediation techniques for reducing pharmaceutical residues, with a special emphasis on microbial physiological aspects. Numerous microorganisms, including algae, bacteria or fungi, can biodegrade various pharmaceutical compounds such as antibiotics, analgesics and beta-blockers. Some microorganisms are capable of transferring electrons within the cell, and this feature can be harnessed using Bio Electrochemical Systems (BES) to potentiate the degradation of pharmaceuticals present in wastewater. Moreover, researchers are evaluating the genetic modification of microbial strains to improve their degradation capacity and expand list of target compounds. This includes also discuss how environment changes, such as fluctuations in temperature or pH, may affect bioremediation efficiency. Furthermore, the presence of pharmaceuticals in the environment is emphasised as a major public health issue because it increases the chance for antibiotic-resistant bacteria emerging. This review combines existing information and outlines needed research areas for improving bioremediation technologies in the future.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"705-723"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic algorithm-optimized artificial neural network for multi-objective optimization of biomass and exopolysaccharide production by Haloferax mediterranei. 遗传算法优化的人工神经网络多目标优化地中海黄颡鱼生物量和胞外多糖产量。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-01 Epub Date: 2025-03-22 DOI: 10.1007/s00449-025-03143-3
Alaa M Al Rawahi, Mohd Zafar, Taqi Ahmed Khan, Sara Al Araimi, Biswanath Mahanty, Shishir Kumar Behera
{"title":"Genetic algorithm-optimized artificial neural network for multi-objective optimization of biomass and exopolysaccharide production by Haloferax mediterranei.","authors":"Alaa M Al Rawahi, Mohd Zafar, Taqi Ahmed Khan, Sara Al Araimi, Biswanath Mahanty, Shishir Kumar Behera","doi":"10.1007/s00449-025-03143-3","DOIUrl":"10.1007/s00449-025-03143-3","url":null,"abstract":"<p><p>Microbial production of industrially important exopolysaccharide (EPS) from extremophiles has several advantages. In this study, key media components (i.e., sucrose, yeast extract, and urea) were optimized for biomass growth and extracellular EPS production in Haloferax mediterranei DSM 1411 using Box-Behnken design. In a multi-objective optimization framework, response surface methodology (RSM) and genetic algorithm (GA)-optimized artificial neural network (ANN) were used to minimize biomass growth while increasing EPS production. The performance of the selected ANN model for the prediction of biomass and EPS (R<sup>2</sup>: 0.964 and 0.975, respectively) was found to be better than that of the multiple regression model (R<sup>2</sup>: 0.818, 0.963, respectively). The main effect of sucrose and its interaction with urea appears to have a significant effect on both responses. The ANN model projects an increase in EPS production from 4.49 to 18.2 g l<sup>-1</sup> while shifting the priority from biomass to biopolymer. The optimized condition predicted a maximum biomass and EPS production of 17.27 g l<sup>-1</sup> and 17.80 g l<sup>-1</sup>, respectively, at concentrations of sucrose (19.98 g l<sup>-1</sup>), yeast extract (1.97 g l<sup>-1</sup>), and urea (1.99 g l<sup>-1</sup>). Based on multi-objective optimization, the GA-ANN model predicted an increase in the EPS to biomass ratio for increasing the EPS and associated biomass production. The extracted EPS, identified as Gellan gum through NMR spectroscopy, was further characterized for surface and elemental composition using SEM-EDX analysis.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"785-798"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143690968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient enzymatic hydrolysis of sweet potato residue by fed-batch method to prepare high- concentration glucose. 用补料分批法高效酶解甘薯渣制备高浓度葡萄糖。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-01 Epub Date: 2025-03-25 DOI: 10.1007/s00449-025-03146-0
Shaoyu Wang, Jialong Xu, Shuai Xu, Yuxiang Li, Zhongbo Sun, Dahai Li, Yaohong Ma, Juanjuan Qian, Liping Tan, Tongjun Liu
{"title":"Efficient enzymatic hydrolysis of sweet potato residue by fed-batch method to prepare high- concentration glucose.","authors":"Shaoyu Wang, Jialong Xu, Shuai Xu, Yuxiang Li, Zhongbo Sun, Dahai Li, Yaohong Ma, Juanjuan Qian, Liping Tan, Tongjun Liu","doi":"10.1007/s00449-025-03146-0","DOIUrl":"10.1007/s00449-025-03146-0","url":null,"abstract":"<p><p>China is the largest producer and exporter of sweet potato in the world. Sweet potato residue (SPR) separated after starch extraction account for more than 10% of the total dry matter of sweet potatoes. However, large amounts of unutilized SPR can cause environmental pollution. SPR is rich in starch and cellulose, both of which can be converted into glucose, making it a good carbon source for microbial fermentation. Therefore, an efficient SPR enzymatic process needs to be developed. The technological conditions of high-solid enzymatic hydrolysis of SPR by fed-batch was investigated in detail. Cellulase, amylase, and pectinase had synergistic effects on SPR enzymatic digestion. The experiments were first conducted to optimize the total enzyme addition of 15 mg enzyme protein/g substrate. The experiments were designed using Design-Expert (10.0) to optimize the enzyme proportions to 42%, 31.8%, and 26.2% for cellulase, amylase, and pectinase, respectively. The fed-batch enzymatic hydrolysis of SPR was investigated. The feed time and amount were optimized. The results showed that the initial SPR enzymatic hydrolysis concentration was 14% (w/v), 9% (w/v) was added at 3 h, 6 h and 12 h, respectively and the final substrate concentration was 41% (w/v). After 24 h of enzymatic hydrolysis, the glucose concentration obtained was 194.57 g/L and the glucan conversion was 63.58%. The fed-batch enzymatic hydrolysis of SPR described in this study has great potential for the whole chain utilization of sweet potato and in the microbial fermentation industry as it is environmentally friendly, economical and efficient.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"829-839"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ synthesis of silver nanoparticles on silk: producing antibacterial fabrics. 在蚕丝上原位合成纳米银:生产抗菌织物。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-05-01 Epub Date: 2025-03-03 DOI: 10.1007/s00449-025-03138-0
Xiao-Qian Jin, Jia-Lei Li, Jie Liu, Liang-Liang Chen, Chan Liu, Ya-Qing Zhou, Wen-Pu Shi, Huan Liang, Wei-Hong Guo, Da-Chuan Yin
{"title":"In situ synthesis of silver nanoparticles on silk: producing antibacterial fabrics.","authors":"Xiao-Qian Jin, Jia-Lei Li, Jie Liu, Liang-Liang Chen, Chan Liu, Ya-Qing Zhou, Wen-Pu Shi, Huan Liang, Wei-Hong Guo, Da-Chuan Yin","doi":"10.1007/s00449-025-03138-0","DOIUrl":"10.1007/s00449-025-03138-0","url":null,"abstract":"<p><p>Herein, we explored an effective method for preparing silver nanoparticles (Ag NPs)-coated antibacterial silk fabrics. In particular, using amino acids and cellulose from silk as reducing agents and silver nitrate as a precursor, Ag NPs were synthesised in situ on the surface of silk without requiring additional reducing agents and catalysts. The surface morphology and chemical composition of the involved samples were characterised using techniques such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Notably, silk and silk precursors (silkworm cocoons, silk fibers and sericin) could be used for in situ Ag NPs synthesis. Furthermore, the antibacterial properties of the samples were evaluated against Escherichia coli-a Gram-negative bacterium-as a model, demonstrating an impressive antibacterial rate of up to 99.91%. In addition, we investigated the water absorption behaviour of the samples at 25 °C by assessing their moisture regain, water retention value and vertical wick height. The results indicated that the Ag NPs coating did not damage the water absorption performance of the involved silk. Finally, we compared the fabric performance before and after treatment using a universal testing machine and colorimeter. The results showed that the mechanical properties of the fabrics with the Ag NPs coating did not substantially change with treatment, but the fabrics became more yellowish. Overall, this research has notable application potential in the field of antibacterial fabrics.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"725-736"},"PeriodicalIF":3.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143539827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信