Xia Yi, Xinji Li, Jianqi Han, Zhidan Liu, Xiaohui Shi, Tao Wen, Jie Zhu
{"title":"Itaconic acid production from corn stover hydrolysates for a newly isolated Aspergillus terreus through adaptive evolution.","authors":"Xia Yi, Xinji Li, Jianqi Han, Zhidan Liu, Xiaohui Shi, Tao Wen, Jie Zhu","doi":"10.1007/s00449-025-03161-1","DOIUrl":null,"url":null,"abstract":"<p><p>Itaconic acid can be produced using lignocellulosic biomass; however, the inhibitors from pretreatment process of biorefinery are toxic to the fermenting strains. Here, with 35.70 ± 0.69 g/L (0.19 ± 0.05 g/L·h and 73.84 ± 0.01%) itaconic acid from shake flask fermentation of synthetic medium (SM), a newly isolated Aspergillus terreus just produced 1.01 ± 0.01 g/L itaconic acid from corn stover hydrolysates (CSH) for the serious block of aldehyde inhibitors and acetic acid. Convincingly, 25.34 ± 3.94 g/L (0.13 ± 0.02 g/L·h and 37.92 ± 3.89%) itaconic acid was achieved from the detoxified CSH (with residual 0.49 g/L acetic acid) using 4.0% activated charcoal. 21.64 ± 2.42 g/L (0.05 ± 0.01 g/L·h and 26.96 ± 7.81%) itaconic acid was further achieved from CSH for the adapted A. terreus with better degradation ability of furanic aldehydes and phenolic aldehydes. Furthermore, the 108 mutation sites of nine genes from adaptive laboratory evolution (ALE) for A. terreus were further uncovered through single nucleotide polymorphisms (SNPs) analysis, and thus would be responsible for the improved fermentability of itaconic acid from CSH. The current work broke the bottlenecks in itaconic acid fermentation directly from CSH through improving A. terreus using directed evolution technique, and thus would provide a strain biocatalyst A. terreus and establish the alternative strategy to efficiently produce itaconic acid using corn stover.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03161-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Itaconic acid can be produced using lignocellulosic biomass; however, the inhibitors from pretreatment process of biorefinery are toxic to the fermenting strains. Here, with 35.70 ± 0.69 g/L (0.19 ± 0.05 g/L·h and 73.84 ± 0.01%) itaconic acid from shake flask fermentation of synthetic medium (SM), a newly isolated Aspergillus terreus just produced 1.01 ± 0.01 g/L itaconic acid from corn stover hydrolysates (CSH) for the serious block of aldehyde inhibitors and acetic acid. Convincingly, 25.34 ± 3.94 g/L (0.13 ± 0.02 g/L·h and 37.92 ± 3.89%) itaconic acid was achieved from the detoxified CSH (with residual 0.49 g/L acetic acid) using 4.0% activated charcoal. 21.64 ± 2.42 g/L (0.05 ± 0.01 g/L·h and 26.96 ± 7.81%) itaconic acid was further achieved from CSH for the adapted A. terreus with better degradation ability of furanic aldehydes and phenolic aldehydes. Furthermore, the 108 mutation sites of nine genes from adaptive laboratory evolution (ALE) for A. terreus were further uncovered through single nucleotide polymorphisms (SNPs) analysis, and thus would be responsible for the improved fermentability of itaconic acid from CSH. The current work broke the bottlenecks in itaconic acid fermentation directly from CSH through improving A. terreus using directed evolution technique, and thus would provide a strain biocatalyst A. terreus and establish the alternative strategy to efficiently produce itaconic acid using corn stover.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.