{"title":"Temperature-field multiscale regulated 3D PVA-PPy conductive hydrogel for enhanced bio-electrocatalytic performance.","authors":"Xiaofei Liu, Xingshuang Liu, Qing Wen, Ye Chen","doi":"10.1007/s00449-025-03201-w","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial fuel cells (MFCs) have been proven to be a green technology for solving energy crises, but their low power density limits their large-scale practical applications. In this paper, a three-dimensional porous composite hydrogel polyvinyl alcohol/polypyrrole (PVA/PPy) with good biocompatibility was prepared by temperature-field regulation via alternating cycles between low temperature (- 20 °C) and room temperature (25 °C) and used as the anode in MFC. The three-dimensional network structure of PPy nanospheres compressed by ice crystal stress exhibited excellent charge conduction capability and ion transport performance, which significantly improved the interfacial charge transfer efficiency of PVA/PPy-5 bioanode. Besides, the addition of PVA endowed the hydrogel with mechanical properties to resist the external forces. As the results, the maximum power density of PVA/PPy-5 MFC was 1521.04 mW/m<sup>2</sup>, which was 1.76, 2.16 and 8.32 times higher than that of PVA/PPy-0, PPy-5 and carbon felt MFCs, respectively. Such enhancement could be attributed to the combined effects of three factors, including the FT process, biocompatibility of PVA, and bioelectrocatalytic activity of polypyrrole. The high-throughput sequencing technology revealed that the PVA/PPy-5 hydrogel anode, which facilitated the selective enrichment of electrogenic microbes, played a crucial role on the regulation of functional biofilm. This work provides a new approach for developing high-performance electrodes for MFC.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03201-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial fuel cells (MFCs) have been proven to be a green technology for solving energy crises, but their low power density limits their large-scale practical applications. In this paper, a three-dimensional porous composite hydrogel polyvinyl alcohol/polypyrrole (PVA/PPy) with good biocompatibility was prepared by temperature-field regulation via alternating cycles between low temperature (- 20 °C) and room temperature (25 °C) and used as the anode in MFC. The three-dimensional network structure of PPy nanospheres compressed by ice crystal stress exhibited excellent charge conduction capability and ion transport performance, which significantly improved the interfacial charge transfer efficiency of PVA/PPy-5 bioanode. Besides, the addition of PVA endowed the hydrogel with mechanical properties to resist the external forces. As the results, the maximum power density of PVA/PPy-5 MFC was 1521.04 mW/m2, which was 1.76, 2.16 and 8.32 times higher than that of PVA/PPy-0, PPy-5 and carbon felt MFCs, respectively. Such enhancement could be attributed to the combined effects of three factors, including the FT process, biocompatibility of PVA, and bioelectrocatalytic activity of polypyrrole. The high-throughput sequencing technology revealed that the PVA/PPy-5 hydrogel anode, which facilitated the selective enrichment of electrogenic microbes, played a crucial role on the regulation of functional biofilm. This work provides a new approach for developing high-performance electrodes for MFC.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.