{"title":"利用琥珀酸放线菌通过半同步糖化和发酵提高木质纤维素生物质琥珀酸产量。","authors":"Dwini Normayulisa Putri, Meka Saima Perdani, Ibnu Maulana Hidayatullah, Tania Surya Utami, Kenny Lischer, Apriliana Cahya Khayrani, Muhamad Sahlan, Heri Hermansyah","doi":"10.1007/s00449-025-03211-8","DOIUrl":null,"url":null,"abstract":"<p><p>The utilization of semi-simultaneous saccharification and fermentation (SSSF) as the novel configuration has resulted in enhanced succinic acid (SA) production from lignocellulose biomass by Actinobacillus succinogenes. The effect of inoculum concentration, biomass type, substrate concentration, and fermentation configuration on SA production was examined in this study. The pre-hydrolysis process was applied to the pre-treated biomass for 6 h to facilitate the simultaneous saccharification and fermentation (SSF) process, which was then carried out for 48 h to achieve the SSSF configuration. According to the results, the production of SA from oil palm empty fruit bunch (OPEFB) through SSF and SSSF was 0.93 and 1.18 g/L and from sugarcane bagasse (SB) was 0.98 and 1.19 g/L, respectively. Results revealed, SSSF resulted in a 21-26% higher SA concentration compared to SSF. Furthermore, the concentration of the inoculum and substrate significantly affected the generation of SA from OPEFB but not for SB. According to this study, SSSF significantly enhanced SA production from lignocellulose biomass compared to SSF.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1755-1764"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced succinic acid production from lignocellulosic biomass using Actinobacillus succinogenes via semi-simultaneous saccharification and fermentation.\",\"authors\":\"Dwini Normayulisa Putri, Meka Saima Perdani, Ibnu Maulana Hidayatullah, Tania Surya Utami, Kenny Lischer, Apriliana Cahya Khayrani, Muhamad Sahlan, Heri Hermansyah\",\"doi\":\"10.1007/s00449-025-03211-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The utilization of semi-simultaneous saccharification and fermentation (SSSF) as the novel configuration has resulted in enhanced succinic acid (SA) production from lignocellulose biomass by Actinobacillus succinogenes. The effect of inoculum concentration, biomass type, substrate concentration, and fermentation configuration on SA production was examined in this study. The pre-hydrolysis process was applied to the pre-treated biomass for 6 h to facilitate the simultaneous saccharification and fermentation (SSF) process, which was then carried out for 48 h to achieve the SSSF configuration. According to the results, the production of SA from oil palm empty fruit bunch (OPEFB) through SSF and SSSF was 0.93 and 1.18 g/L and from sugarcane bagasse (SB) was 0.98 and 1.19 g/L, respectively. Results revealed, SSSF resulted in a 21-26% higher SA concentration compared to SSF. Furthermore, the concentration of the inoculum and substrate significantly affected the generation of SA from OPEFB but not for SB. According to this study, SSSF significantly enhanced SA production from lignocellulose biomass compared to SSF.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"1755-1764\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-025-03211-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03211-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Enhanced succinic acid production from lignocellulosic biomass using Actinobacillus succinogenes via semi-simultaneous saccharification and fermentation.
The utilization of semi-simultaneous saccharification and fermentation (SSSF) as the novel configuration has resulted in enhanced succinic acid (SA) production from lignocellulose biomass by Actinobacillus succinogenes. The effect of inoculum concentration, biomass type, substrate concentration, and fermentation configuration on SA production was examined in this study. The pre-hydrolysis process was applied to the pre-treated biomass for 6 h to facilitate the simultaneous saccharification and fermentation (SSF) process, which was then carried out for 48 h to achieve the SSSF configuration. According to the results, the production of SA from oil palm empty fruit bunch (OPEFB) through SSF and SSSF was 0.93 and 1.18 g/L and from sugarcane bagasse (SB) was 0.98 and 1.19 g/L, respectively. Results revealed, SSSF resulted in a 21-26% higher SA concentration compared to SSF. Furthermore, the concentration of the inoculum and substrate significantly affected the generation of SA from OPEFB but not for SB. According to this study, SSSF significantly enhanced SA production from lignocellulose biomass compared to SSF.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.