Zichao Wang, Yi Zheng, Jinghan Guo, Ziru Lai, Jiale Liu, Na Li, Zhitao Li, Minjie Gao, Xueyi Qiao, Yahui Yang, Huiru Zhang, Lemei An, Keyu Xu
{"title":"Recent advance on the production of microbial exopolysaccharide from waste materials.","authors":"Zichao Wang, Yi Zheng, Jinghan Guo, Ziru Lai, Jiale Liu, Na Li, Zhitao Li, Minjie Gao, Xueyi Qiao, Yahui Yang, Huiru Zhang, Lemei An, Keyu Xu","doi":"10.1007/s00449-025-03169-7","DOIUrl":null,"url":null,"abstract":"<p><p>Polysaccharide has been widely used in the fields of industry, agriculture, food and medicine because of its excellent physicochemical properties and bioactivities. Compared to plant and animal polysaccharides, microbial exopolysaccharide has advantages of occupying less cultivated land, short fermentation period, controllable fermentation process and not restricted by seasons. However, due to the deterioration of global climates and outbreak of conflicts, food crisis has become more and more serious. Therefore, searching alternative substrates for microbial exopolysaccharide production has attracted worldwide attention, waste materials might be an ideal substitute due to its high-content nutrients. Present work discussed and reviewed the production of microbial exopolysaccharide from molasses, cheese whey, lignocellulosic biomass, fruit pomace and/or husk, crude glycerol and kitchen waste. It was found that commercial grade exopolysaccharides were mainly produced from waste materials via submerged fermentation, and pretreatment of waste materials is a commonly used strategy. Although industrial production of microbial exopolysaccharides with waste materials as substrate has not been reported, we hoped that this work could not only provide contribution for efficient utilization of waste materials, but also help for alleviating global food crises.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03169-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polysaccharide has been widely used in the fields of industry, agriculture, food and medicine because of its excellent physicochemical properties and bioactivities. Compared to plant and animal polysaccharides, microbial exopolysaccharide has advantages of occupying less cultivated land, short fermentation period, controllable fermentation process and not restricted by seasons. However, due to the deterioration of global climates and outbreak of conflicts, food crisis has become more and more serious. Therefore, searching alternative substrates for microbial exopolysaccharide production has attracted worldwide attention, waste materials might be an ideal substitute due to its high-content nutrients. Present work discussed and reviewed the production of microbial exopolysaccharide from molasses, cheese whey, lignocellulosic biomass, fruit pomace and/or husk, crude glycerol and kitchen waste. It was found that commercial grade exopolysaccharides were mainly produced from waste materials via submerged fermentation, and pretreatment of waste materials is a commonly used strategy. Although industrial production of microbial exopolysaccharides with waste materials as substrate has not been reported, we hoped that this work could not only provide contribution for efficient utilization of waste materials, but also help for alleviating global food crises.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.