Investigation of antioxidant, antibacterial, anticancer and wound healing properties of eco-friendly synthesized copper oxide nanoparticles from Plumeria rubra leaf extract.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bioprocess and Biosystems Engineering Pub Date : 2025-08-01 Epub Date: 2025-05-21 DOI:10.1007/s00449-025-03176-8
Annapoorani Angusamy, Subramanian Palanisamy, Sangeetha Ravi, Manikandan Kumaresan, Sonaimuthu Mohandoss, SangGuan You, Manikandan Ramar
{"title":"Investigation of antioxidant, antibacterial, anticancer and wound healing properties of eco-friendly synthesized copper oxide nanoparticles from Plumeria rubra leaf extract.","authors":"Annapoorani Angusamy, Subramanian Palanisamy, Sangeetha Ravi, Manikandan Kumaresan, Sonaimuthu Mohandoss, SangGuan You, Manikandan Ramar","doi":"10.1007/s00449-025-03176-8","DOIUrl":null,"url":null,"abstract":"<p><p>Plants serve as a rich source of bioactive agents and coupling them with carriers using nanotechnology has recently become an effective therapeutic approach in pharmacognosy. Metal oxides, especially copper oxide (CuO), have been employed in synthesizing nanoparticles due to their efficient reducing properties. The purpose of this work was to examine the physicochemical, antioxidant, antibacterial, anticancer, and wound healing abilities of copper oxide nanoparticles (CuONPs) synthesized using Plumeria rubra leaf extract. FTIR, XRD, FESEM, EDX, AFM, and UV-vis spectroscopy were used to confirm the formation of CuONPs, and the results showed that they were spherical in shape and 35 nm in size. DPPH and nitric oxide antioxidant assays revealed that they possess effective free radical scavenging ability. CuONPs showed bactericidal activity against human pathogenic bacteria. The anticancer effect of CuONPs was assessed on the Neuro-2a (N2a) neuroblastoma cells. Both P. rubra leaf extract and CuONPs exhibited dose-dependent cytotoxicity with morphological distortions and apoptosis, along with a loss of membrane integrity. In vivo analysis of CuONPs for their wound healing ability in Wistar albino rats showed a better wound closure percentage compared to that of the control animals. Based on our findings, CuONPs may be applied as a potential therapeutic agent in developing treatments for a spectrum of various diseases.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1295-1310"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03176-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plants serve as a rich source of bioactive agents and coupling them with carriers using nanotechnology has recently become an effective therapeutic approach in pharmacognosy. Metal oxides, especially copper oxide (CuO), have been employed in synthesizing nanoparticles due to their efficient reducing properties. The purpose of this work was to examine the physicochemical, antioxidant, antibacterial, anticancer, and wound healing abilities of copper oxide nanoparticles (CuONPs) synthesized using Plumeria rubra leaf extract. FTIR, XRD, FESEM, EDX, AFM, and UV-vis spectroscopy were used to confirm the formation of CuONPs, and the results showed that they were spherical in shape and 35 nm in size. DPPH and nitric oxide antioxidant assays revealed that they possess effective free radical scavenging ability. CuONPs showed bactericidal activity against human pathogenic bacteria. The anticancer effect of CuONPs was assessed on the Neuro-2a (N2a) neuroblastoma cells. Both P. rubra leaf extract and CuONPs exhibited dose-dependent cytotoxicity with morphological distortions and apoptosis, along with a loss of membrane integrity. In vivo analysis of CuONPs for their wound healing ability in Wistar albino rats showed a better wound closure percentage compared to that of the control animals. Based on our findings, CuONPs may be applied as a potential therapeutic agent in developing treatments for a spectrum of various diseases.

黄花鸡蛋花叶提取物合成的环保氧化铜纳米颗粒的抗氧化、抗菌、抗癌和伤口愈合性能研究。
植物作为生物活性物质的丰富来源,利用纳米技术将其与载体偶联已成为近年来生药学领域的有效治疗手段。金属氧化物,特别是氧化铜(CuO)由于其高效的还原性能,已被用于纳米颗粒的合成。研究了以红鸡翅叶提取物为原料合成的氧化铜纳米颗粒(CuONPs)的理化、抗氧化、抗菌、抗癌和伤口愈合能力。利用FTIR、XRD、FESEM、EDX、AFM、UV-vis等光谱分析证实了CuONPs的形成,结果表明CuONPs为球形,尺寸为35 nm。DPPH和一氧化氮抗氧化实验表明它们具有有效的自由基清除能力。CuONPs对人致病菌具有一定的杀菌活性。研究了CuONPs对神经-2a (N2a)神经母细胞瘤细胞的抗癌作用。红叶提取物和CuONPs均表现出剂量依赖性的细胞毒性,包括形态扭曲和细胞凋亡,以及膜完整性的丧失。体内分析CuONPs在Wistar白化大鼠中的伤口愈合能力显示,与对照动物相比,CuONPs的伤口愈合率更高。基于我们的发现,CuONPs可能作为一种潜在的治疗剂应用于开发各种疾病的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信