Jessica Siew Kiong Ling, Sie Yon Lau, Shamini Anboo, Murat Yılmaz
{"title":"聚乙二醇和戊二醛作为脂肪酶固定化有机-无机杂化纳米花增强剂的效果。","authors":"Jessica Siew Kiong Ling, Sie Yon Lau, Shamini Anboo, Murat Yılmaz","doi":"10.1007/s00449-025-03181-x","DOIUrl":null,"url":null,"abstract":"<p><p>The present study investigates the influence of polyethylene glycol (PEG) and glutaraldehyde (GA) on the synthesis and enzymatic activity of lipase hybrid nanoflowers. The effect of lipase concentration on hybrid nanoflower formation was first assessed, revealing that the optimum lipase concentration was 0.2 mg/mL. At this concentration, the encapsulation of lipase within the hybrid nanoflowers reached its maximum efficiency. Further, the effects of PEG and GA concentrations, as well as pH, on the enzymatic activity of the nanoflowers were evaluated. The results demonstrated that 2% (v/v) PEG and 3% (v/v) GA were the most effective concentrations, with the highest activity observed at pH 8. Comparative studies showed that GA-treated lipase hybrid nanoflowers exhibited a remarkable 160% increase in enzymatic activity over the free lipase, outperforming PEG in terms of catalytic performance. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy analyses confirmed that both PEG and GA treatments altered the morphology and structural characteristics of the hybrid nanoflowers, with GA inducing more pronounced changes. Despite these morphological alterations, the enzymatic activity was significantly enhanced, particularly in the GA-treated hybrid nanoflowers. In conclusion, this study highlights the superior performance of glutaraldehyde as an enhancer for the production of highly active lipase hybrid nanoflowers, offering promising applications in biocatalysis and enzyme immobilization.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1349-1362"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234603/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effectiveness of polyethylene glycol and glutaraldehyde as enhancers for lipase-immobilized hybrid organic-inorganic nanoflowers.\",\"authors\":\"Jessica Siew Kiong Ling, Sie Yon Lau, Shamini Anboo, Murat Yılmaz\",\"doi\":\"10.1007/s00449-025-03181-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study investigates the influence of polyethylene glycol (PEG) and glutaraldehyde (GA) on the synthesis and enzymatic activity of lipase hybrid nanoflowers. The effect of lipase concentration on hybrid nanoflower formation was first assessed, revealing that the optimum lipase concentration was 0.2 mg/mL. At this concentration, the encapsulation of lipase within the hybrid nanoflowers reached its maximum efficiency. Further, the effects of PEG and GA concentrations, as well as pH, on the enzymatic activity of the nanoflowers were evaluated. The results demonstrated that 2% (v/v) PEG and 3% (v/v) GA were the most effective concentrations, with the highest activity observed at pH 8. Comparative studies showed that GA-treated lipase hybrid nanoflowers exhibited a remarkable 160% increase in enzymatic activity over the free lipase, outperforming PEG in terms of catalytic performance. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy analyses confirmed that both PEG and GA treatments altered the morphology and structural characteristics of the hybrid nanoflowers, with GA inducing more pronounced changes. Despite these morphological alterations, the enzymatic activity was significantly enhanced, particularly in the GA-treated hybrid nanoflowers. In conclusion, this study highlights the superior performance of glutaraldehyde as an enhancer for the production of highly active lipase hybrid nanoflowers, offering promising applications in biocatalysis and enzyme immobilization.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"1349-1362\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234603/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-025-03181-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03181-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Effectiveness of polyethylene glycol and glutaraldehyde as enhancers for lipase-immobilized hybrid organic-inorganic nanoflowers.
The present study investigates the influence of polyethylene glycol (PEG) and glutaraldehyde (GA) on the synthesis and enzymatic activity of lipase hybrid nanoflowers. The effect of lipase concentration on hybrid nanoflower formation was first assessed, revealing that the optimum lipase concentration was 0.2 mg/mL. At this concentration, the encapsulation of lipase within the hybrid nanoflowers reached its maximum efficiency. Further, the effects of PEG and GA concentrations, as well as pH, on the enzymatic activity of the nanoflowers were evaluated. The results demonstrated that 2% (v/v) PEG and 3% (v/v) GA were the most effective concentrations, with the highest activity observed at pH 8. Comparative studies showed that GA-treated lipase hybrid nanoflowers exhibited a remarkable 160% increase in enzymatic activity over the free lipase, outperforming PEG in terms of catalytic performance. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy analyses confirmed that both PEG and GA treatments altered the morphology and structural characteristics of the hybrid nanoflowers, with GA inducing more pronounced changes. Despite these morphological alterations, the enzymatic activity was significantly enhanced, particularly in the GA-treated hybrid nanoflowers. In conclusion, this study highlights the superior performance of glutaraldehyde as an enhancer for the production of highly active lipase hybrid nanoflowers, offering promising applications in biocatalysis and enzyme immobilization.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.