Planktonic anammox bacteria toward a better understanding of ecophysiological traits and harnessing the untapped potential as a bioresource.

IF 3.6 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yantong Liu, Mingda Zhou, Jiawei Liu, Han Wang, Zibin Li, Yayi Wang
{"title":"Planktonic anammox bacteria toward a better understanding of ecophysiological traits and harnessing the untapped potential as a bioresource.","authors":"Yantong Liu, Mingda Zhou, Jiawei Liu, Han Wang, Zibin Li, Yayi Wang","doi":"10.1007/s00449-025-03210-9","DOIUrl":null,"url":null,"abstract":"<p><p>Anaerobic ammonium-oxidizing (anammox) bacteria play a crucial role in biogeochemical nitrogen cycling and have been applied to wastewater treatment as a revolutionary nitrogen removal technology. Despite the successful application of anammox technology in engineering, our understanding of anammox bacteria in terms of their physiological and biochemical characteristics remains the tip of the iceberg, and challenges mainly arise from their slow growth rates and the absence of pure cultures. The development of enrichment cultures, particularly through membrane bioreactors, is important in addressing these challenges. In this review, we highlight the key factors that are vital for optimizing planktonic cell growth and preventing cell aggregation, i.e., calcium and magnesium concentration, oxygen level, and solids retention time, and propose the involved regulation strategies which help improve our understanding of the ecology of anammox bacteria and their competitive advantages, particularly in nitrogen-limited environments. Then, insights into the unique cellular structures of anammox bacteria (including anammoxosome and their distinct lipid membranes) and the complex metabolic pathways involving unique nitrogen intermediates were discussed, partially based on anammox planktonic cells. Finally, recent advances pertaining to non-traditional growth conditions and novel applications, such as ladderane lipid biosynthesis, extracellular polymeric substance production, and electro-anammox processes are discussed, underscoring their potential in innovative bioresource utilization beyond wastewater treatment. This review provides an in-depth understanding of planktonic cultivation techniques, growth dynamics, and biochemical characteristics of anammox bacteria, and highlights promising avenues for future research and application of valuable anammox bacteria resources, propelling their application in both ecological and engineered systems.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03210-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Anaerobic ammonium-oxidizing (anammox) bacteria play a crucial role in biogeochemical nitrogen cycling and have been applied to wastewater treatment as a revolutionary nitrogen removal technology. Despite the successful application of anammox technology in engineering, our understanding of anammox bacteria in terms of their physiological and biochemical characteristics remains the tip of the iceberg, and challenges mainly arise from their slow growth rates and the absence of pure cultures. The development of enrichment cultures, particularly through membrane bioreactors, is important in addressing these challenges. In this review, we highlight the key factors that are vital for optimizing planktonic cell growth and preventing cell aggregation, i.e., calcium and magnesium concentration, oxygen level, and solids retention time, and propose the involved regulation strategies which help improve our understanding of the ecology of anammox bacteria and their competitive advantages, particularly in nitrogen-limited environments. Then, insights into the unique cellular structures of anammox bacteria (including anammoxosome and their distinct lipid membranes) and the complex metabolic pathways involving unique nitrogen intermediates were discussed, partially based on anammox planktonic cells. Finally, recent advances pertaining to non-traditional growth conditions and novel applications, such as ladderane lipid biosynthesis, extracellular polymeric substance production, and electro-anammox processes are discussed, underscoring their potential in innovative bioresource utilization beyond wastewater treatment. This review provides an in-depth understanding of planktonic cultivation techniques, growth dynamics, and biochemical characteristics of anammox bacteria, and highlights promising avenues for future research and application of valuable anammox bacteria resources, propelling their application in both ecological and engineered systems.

浮游厌氧氨氧化菌朝着更好地了解生态生理特性和利用未开发的生物资源潜力的方向发展。
厌氧氨氧化(anammox)细菌在生物地球化学氮循环中起着至关重要的作用,作为一种革命性的脱氮技术已被应用于污水处理。尽管厌氧氨氧化技术在工程上的成功应用,但我们对厌氧氨氧化菌的生理生化特性的了解仍然是冰山一角,挑战主要来自其生长速度缓慢和缺乏纯培养物。发展富集培养,特别是通过膜生物反应器,是解决这些挑战的重要途径。本文从钙、镁浓度、氧水平、固相滞留时间等方面对优化浮游细胞生长和防止细胞聚集的关键因素进行了综述,并提出了相应的调控策略,以帮助我们更好地了解厌氧氨氧化菌的生态学及其在氮限制环境下的竞争优势。然后,深入了解厌氧氨氧化细菌的独特细胞结构(包括厌氧氨酶体及其独特的脂质膜)以及涉及独特氮中间体的复杂代谢途径,部分基于厌氧氨氧化浮游细胞。最后,讨论了有关非传统生长条件和新应用的最新进展,如脂质生物合成、细胞外聚合物生产和电厌氧氨氧化工艺,强调了它们在废水处理以外的创新生物资源利用方面的潜力。本文综述了厌氧氨氧化菌的浮游培养技术、生长动态和生化特性,并指出了未来研究和应用厌氧氨氧化菌宝贵资源的前景,推动其在生态和工程系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信