Bioprocess and Biosystems Engineering最新文献

筛选
英文 中文
Extension of first principle elemental balancing soft-sensors by nonlinear reaction kinetics for increased robustness in bioprocess monitoring. 用非线性反应动力学扩展第一原理元素平衡软传感器以增加生物过程监测的鲁棒性。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-02-01 Epub Date: 2024-12-13 DOI: 10.1007/s00449-024-03111-3
Don Fabian Müller, Daniel Wibbing, Julian Kager
{"title":"Extension of first principle elemental balancing soft-sensors by nonlinear reaction kinetics for increased robustness in bioprocess monitoring.","authors":"Don Fabian Müller, Daniel Wibbing, Julian Kager","doi":"10.1007/s00449-024-03111-3","DOIUrl":"10.1007/s00449-024-03111-3","url":null,"abstract":"<p><p>A first principle soft-sensor for biomass and substrate estimation in upstream bioprocessing based on the fusion of elemental balancing and nonlinear kinetics is presented. It aims to extend the validity range of well-established elemental balancing soft sensors to substrate saturated and overfeeding conditions that often occur in induced production phases. An experimental study with recombinant E. coli cultivations was conducted to illustrate the soft-sensor principle and to analyze the accuracy as well as generalizability of the approach. Under substrate limited growth the extended soft-sensor showed similar performance as classical elemental balancing. In induced production phases however, a decline in maximum substrate uptake capacity ( <math><msub><mi>q</mi> <mrow><mi>Smax</mi></mrow> </msub> </math> ) of up to 80% was observed, where the extended soft-sensor showed up to 41 % better estimates for the biomass and up to 75 % better estimates for the substrate in terms of NRMSE. The paper discusses the possible benefits as well as the requirements for the implementation of the extended elemental balancing soft-sensor.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"317-329"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilization of palm sludge oil for rhamnolipid biosynthesis by Pseudomonas aeruginosa USM-AR2 in a stirred tank reactor. 铜绿假单胞菌 USM-AR2 在搅拌罐反应器中利用棕榈污泥油进行鼠李糖脂生物合成。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-02-01 Epub Date: 2024-11-13 DOI: 10.1007/s00449-024-03103-3
Mohd Shafiq Nasir, Ahmad Ramli Mohd Yahya, Nur Asshifa Md Noh
{"title":"Utilization of palm sludge oil for rhamnolipid biosynthesis by Pseudomonas aeruginosa USM-AR2 in a stirred tank reactor.","authors":"Mohd Shafiq Nasir, Ahmad Ramli Mohd Yahya, Nur Asshifa Md Noh","doi":"10.1007/s00449-024-03103-3","DOIUrl":"10.1007/s00449-024-03103-3","url":null,"abstract":"<p><p>The study focused on rhamnolipid production by batch fermentation of Pseudomonas aeruginosa USM-AR2 in a 3-L stirred-tank reactor (STR) using palm sludge oil (PSO) as the sole carbon source. The impact of various agitation rates towards the dispersion of PSO in the medium was evaluated to improve biomass growth and rhamnolipid production. A mechanical foam collection and recycling system was designed and retrofitted to the STR to overcome severe foam formation during fermentation. The maximum biomass produced was 11.29 ± 0.20 g/L obtained at 400 rpm, while the maximum rhamnolipid production was 5.06 ± 1.17 g/L at 600 rpm, giving a rhamnolipid productivity of 0.023 g/L/h. High agitation enhances substrate availability by breaking the hydrophobic semi-solid PSO into smaller substrate particles, increasing surface contact area, thus facilitating the PSO utilisation by P. aeruginosa USM-AR2, thereby inducing rhamnolipid production. This study further demonstrates the ability of rhamnolipid to solubilize and disperse sludge oil, which typically remains a solid at room temperature, in the liquid medium. GCMS analysis showed that five fatty acids, namely palmitic acid, myristic acid, stearic acid, methyl ester and linoleic acid, have been utilised. The rhamnolipid showed an oil spreading test result of 160 mm of waste engine oil displacement compared to control using distilled water that remained non-displaced, and a critical micelle concentration (CMC) of 17 mg/L. In emulsification index (E<sub>24</sub>) assay, the rhamnolipid was shown to emulsify toluene (66.7% ± 7.2), waste engine oil (58.3% ± 7.2), kerosene (41.8% ± 4.8) and n-hexane (33.1% ± 5.7). UPLC analysis on rhamnolipid revealed a congener mixture of rhamnolipid, namely di-rhamnolipid and mono-rhamnolipid mixture. This is the first report on the employment of an integrated foam control reactor system with PSO as the carbon source for rhamnolipid production by P. aeruginosa USM-AR2 culture.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"221-232"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational fluid particle dynamics modeling of tangential flow filtration in perfusion cell culture. 灌注细胞培养中切向流过滤的计算流体粒子动力学建模。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-02-01 Epub Date: 2025-01-03 DOI: 10.1007/s00449-024-03112-2
Hamideh Hayati, Caitlin Kurtz, Yu Feng, Sarwat Khattak
{"title":"Computational fluid particle dynamics modeling of tangential flow filtration in perfusion cell culture.","authors":"Hamideh Hayati, Caitlin Kurtz, Yu Feng, Sarwat Khattak","doi":"10.1007/s00449-024-03112-2","DOIUrl":"10.1007/s00449-024-03112-2","url":null,"abstract":"<p><p>Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm. diameter suspended in the supernatant were quantified using a nano-flow cytometry method. A computational fluid dynamics (CFD) model was developed to evaluate the impact of feed flow rate and particle count on the transmembrane pressure (TMP). Then a steady-state discrete phase model was applied to incorporate particles into the model and simulate the particles deposition over the membrane wall. The results showed an increase in the number of particles and the membrane resistance along the time course of the perfusion process. The CFD model illustrated that more particle deposition was observed at lower feed stream flow rates. The fraction of deposited particle was reduced by > 50% when the feed flow rate was increased from 35 ml/min to 300 ml/min. Our findings suggest that the total number of subvisible particles has a significant impact on TMP and membrane resistance and, thus, could play a major role in the mechanism of membrane fouling. CFD modeling can be a useful tool to predict the behavior of a process in a specific membrane. CFD simulations could also be used to optimize process parameters to improve membrane cleanability, reduce particle deposition, and reduce the risk of membrane fouling.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"331-342"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electric stimulation: a versatile manipulation technique mediated microbial applications. 电刺激:一种多用途的操纵技术介导微生物的应用。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-02-01 Epub Date: 2024-11-29 DOI: 10.1007/s00449-024-03107-z
Manjila Adhikari, Li Wang, Dhurba Adhikari, Sujan Khadka, Mati Ullah, Bricard Mbituyimana, Clemence Futila Bukatuka, Zhijun Shi, Guang Yang
{"title":"Electric stimulation: a versatile manipulation technique mediated microbial applications.","authors":"Manjila Adhikari, Li Wang, Dhurba Adhikari, Sujan Khadka, Mati Ullah, Bricard Mbituyimana, Clemence Futila Bukatuka, Zhijun Shi, Guang Yang","doi":"10.1007/s00449-024-03107-z","DOIUrl":"10.1007/s00449-024-03107-z","url":null,"abstract":"<p><p>Electric stimulation (ES) is a versatile technique that uses an electric field to manipulate microorganisms individually. Over the past several decades, the capabilities of ES have expanded from bioremediation to the precise motion control of cells and microorganisms. However, there is limited information on the underlying mechanisms, latest advancement and broader microbial applications of ES in various fields, such as the production of extracellular polymers with upgraded properties. This review article summarizes recent advancements in ES and discusses it as a unique external manipulation technique for microorganisms with wide applications in bioremediation, industry, biofilm deactivation, disinfection, and controlled biosynthesis. One specific application of ES discussed in this review is the extracellular biosynthesis, regulation, and organization of extracellular polymers, such as bacterial cellulose nanofibrils, curdlan, and microbial nanowires. Overall, this review aims to provide a platform for microbial biotechnologists and synthetic biologists to leverage the manipulation of microorganisms using ES for bio-based applications, including the production of extracellular polymers with enhanced properties. Researchers can engineer, manipulate, and control microorganisms for various applications by harnessing the potential of electric fields.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"171-192"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing D-pantothenate production in Escherichia coli through multiplex combinatorial strategies. 通过多重组合策略提高大肠杆菌的 D-泛酸产量。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-02-01 Epub Date: 2024-11-19 DOI: 10.1007/s00449-024-03105-1
Lianggang Huang, Landuo Sui, Yuan Yao, Yixuan Ma, Junping Zhou, Bo Zhang, Zhiqiang Liu, Yuguo Zheng
{"title":"Enhancing D-pantothenate production in Escherichia coli through multiplex combinatorial strategies.","authors":"Lianggang Huang, Landuo Sui, Yuan Yao, Yixuan Ma, Junping Zhou, Bo Zhang, Zhiqiang Liu, Yuguo Zheng","doi":"10.1007/s00449-024-03105-1","DOIUrl":"10.1007/s00449-024-03105-1","url":null,"abstract":"<p><p>D-pantothenate, universally acknowledged as vitamin B5, has garnered considerable interest owing to its crucial functionality in the feed, pharmaceutical, and cosmeceutical sectors. Development of microbial strains for D-pantothenate hyperproducer has emerged as a prominent research direction in recent years. Herein, we converted an engineered Escherichia coli with low yield to a plasmid-free hyperproducer of D-pantothenate using multiplex combinatorial strategies. First, an initial strain was obtained through prolonging the cell lifespan. To promote the accumulation of D-pantothenic acid, the supply of cofactors was adaptively enhanced. Additionally, the heterologous gene panE from Pseudomonas aeruginosa, which encodes ketopantoate reductase (EC 1.1.1.169) catalyzing the synthesis of d-pantoate from α-ketopantoate, was screened and integrated into the chromosome. Subsequently, a strategy of acetate recycling and NOG pathway reconstruction were introduced and successfully to improve the D-pantothenate titer to 5.48 g/L. Additionally, we screened the regulatory factors and optimized its second codon to further increase the DPA yield of the engineered strains to 6.02 g/L in shake flask. The final engineered strain DS6 could efficiently produce 72.40 g/L D-pantothenate, which is 3.18-fold higher than the original strain. This study proposed a novel multiplex combination strategy for developing microbial cell factory of D-pantothenate, which was beneficial for the advancement of efficient D-pantothenate production.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"247-260"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery and investigation of the truncation of the (GGGGS)n linker and its effect on the productivity of bispecific antibodies expressed in mammalian cells. 发现并研究(GGGGS)n连接体的截断及其对哺乳动物细胞中表达的双特异性抗体生产率的影响。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-01-01 Epub Date: 2024-11-03 DOI: 10.1007/s00449-024-03100-6
Yan Fang, Xi Chen, Zhen Sun, Xiaodan Yan, Lani Shi, Congcong Jin
{"title":"Discovery and investigation of the truncation of the (GGGGS)n linker and its effect on the productivity of bispecific antibodies expressed in mammalian cells.","authors":"Yan Fang, Xi Chen, Zhen Sun, Xiaodan Yan, Lani Shi, Congcong Jin","doi":"10.1007/s00449-024-03100-6","DOIUrl":"10.1007/s00449-024-03100-6","url":null,"abstract":"<p><p>Protein engineering is a powerful tool for designing or modifying therapeutic proteins for enhanced efficacy, increased safety, reduced immunogenicity, and improved delivery. Fusion proteins are an important group of therapeutic compounds that often require an ideal linker to combine diverse domains to fulfill the desired function. GGGGS [(G4S)n] linkers are commonly used during the engineering of proteins because of their flexibility and resistance to proteases. However, unexpected truncation was observed in the linker of a bispecific antibody, which presented challenges in terms of production and quality. In this work, a bispecific antibody containing 5*G4S was investigated, and the truncation position of the linkers was confirmed. Our investigation revealed that codon optimization, which can overcome the negative influence of a high repetition rate and high GC content in the (G4S)n linker, may reduce the truncation rate from 5-10% to 1-5%. Moreover, the probability of truncation when a shortened 3* or 4*G4S linker was used was much lower than that when a 5*G4S linker was used in mammalian cells. In the case of expressing a bispecific antibody, the bioactivity and purity of the product containing a shorter G4S linker were further investigated and are discussed.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"159-170"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the efficacy of microalgal-bacterial granular sludge system in lake water remediation. 评估微藻-细菌颗粒污泥系统在湖水修复中的功效。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-01-01 Epub Date: 2024-09-24 DOI: 10.1007/s00449-024-03090-5
Siqi Du, Shaodong Guo, Jieru Yang, Anjie Li, Wenxuan Xiong, Chi Zhang, Shenghui Xu, Yuting Shi, Bin Ji
{"title":"Evaluating the efficacy of microalgal-bacterial granular sludge system in lake water remediation.","authors":"Siqi Du, Shaodong Guo, Jieru Yang, Anjie Li, Wenxuan Xiong, Chi Zhang, Shenghui Xu, Yuting Shi, Bin Ji","doi":"10.1007/s00449-024-03090-5","DOIUrl":"10.1007/s00449-024-03090-5","url":null,"abstract":"<p><p>The microalgal-bacterial granular sludge (MBGS) process is attracting attention as a green wastewater treatment technology. However, research on the application of MBGS in lake water remediation is limited. Thus, this experiment investigated the feasibility and the efficacy of the MBGS process for the treatment of natural lake water in a continuous-flow tubular reactor. The average removal efficiencies of COD, NH<sub>4</sub><sup>+</sup>-N, NO<sub>3</sub><sup>-</sup>-N, NO<sub>2</sub><sup>-</sup>-N, TN, PO<sub>4</sub><sup>3-</sup>-P, TP, and turbidity by MBGS system in the day/night cycles were 50.10/61.39%, 63.52/75.23%, 43.37/73.57%, 90.72/93.48%, 78.30/80.02%, 71.13/74.62%, 65.08/70.57%, 92.32/89.84%, respectively. As the experiment progressed, the total chlorophyll content in MBGS decreased as the granule size increased, while the extracellular polymeric substances content increased, suggesting that the lake water contributed to bacterial growth and favored the stability of MBGS. Moreover, the eukaryotic microorganisms were dominated by Chlorophyta and Rotifera, and prokaryotic microorganisms were dominated by Proteobacteria in MBGS. By promoting the decomposition of various organic compounds in the lake water and inhibiting sludge expansion, these microorganisms help the MBGS system to maintain excellent granular characteristics and performance. Overall, the MBGS system proved to be a feasible option for the remediation of natural lake waters.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"17-26"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient one-pot green synthesis of carboxymethyl cellulose/folic acid embedded ultrafine CeO2 nanocomposite and its superior multi-drug resistant antibacterial activity and anticancer activity. 羧甲基纤维素/叶酸包埋超细CeO2纳米复合材料的高效一锅法绿色合成及其优异的耐多药抗菌活性和抗癌活性。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-01-01 Epub Date: 2024-11-06 DOI: 10.1007/s00449-024-03097-y
Thalakulam Shanmugam Boopathi, Asha Rajiv, T S Geetika Madan Patel, Lakshay Bareja, Saleh H Salmen, Hossam M Aljawdah, Palanisamy Arulselvan, Jagadeesh Suriyaprakash, Indumathi Thangavelu
{"title":"Efficient one-pot green synthesis of carboxymethyl cellulose/folic acid embedded ultrafine CeO<sub>2</sub> nanocomposite and its superior multi-drug resistant antibacterial activity and anticancer activity.","authors":"Thalakulam Shanmugam Boopathi, Asha Rajiv, T S Geetika Madan Patel, Lakshay Bareja, Saleh H Salmen, Hossam M Aljawdah, Palanisamy Arulselvan, Jagadeesh Suriyaprakash, Indumathi Thangavelu","doi":"10.1007/s00449-024-03097-y","DOIUrl":"10.1007/s00449-024-03097-y","url":null,"abstract":"<p><p>Due to the prevalence of drug-resistant bacteria and the ongoing shortage of novel antibiotics as well as the challenge of treating breast cancer, the therapeutic and clinical sectors are consistently seeking effective nanomedicines. The incorporation of metal oxide nanoparticles with biological macromolecules and an organic compound emerges as a promising strategy to enhance breast cancer treatment and antibacterial activity against drug-resistant bacteria in various biomedical applications. This study aims to synthesize a unique nanocomposite consisting of CeO<sub>2</sub> embedded with folic acid and carboxymethyl cellulose (CFC NC) via a green precipitation method using Moringa oleifera. Various spectroscopic and microscopic analyses are utilized to decipher the physicochemical characteristics of CFC NC and active phytocompounds of Moringa oleifera. Antibacterial study against MRSA (Methicillin-resistant Staphylococcus aureus) demonstrated a higher activity (95.6%) for CFC NC compared to its counterparts. The impact is attributed to reactive oxygen species (ROS), which induces a strong photo-oxidative stress, leading to the destruction of bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CFC NC are determined as 600 µg/mL and 1000 µg/mL, respectively. The anticancer activity against breast cancer cell resulted in the IC<sub>50</sub> concentration of 10.8 μg/mL and 8.2 μg/mL for CeO<sub>2</sub> and CFC NC respectively.The biocompatibility test was conducted against fibroblast cells and found 85% of the cells viable, with less toxicity. Therefore, the newly synthesized CFC NC has potential applications in healthcare and industry, enhancing human health conditions.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"121-131"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the potential activity of hyaluronic acid as an antimicrobial agent: experimental and computational validations. 透明质酸作为抗菌剂的潜在活性:实验和计算验证。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-01-01 Epub Date: 2024-09-29 DOI: 10.1007/s00449-024-03091-4
Priya Shukla, Pradeep Srivastava, Abha Mishra
{"title":"On the potential activity of hyaluronic acid as an antimicrobial agent: experimental and computational validations.","authors":"Priya Shukla, Pradeep Srivastava, Abha Mishra","doi":"10.1007/s00449-024-03091-4","DOIUrl":"10.1007/s00449-024-03091-4","url":null,"abstract":"<p><p>This century has seen the rise of antibiotic resistance as a significant public health problem. In addition, oxidative stress may also be a factor in selecting resistant strains of bacteria. The current study analyzed microbially produced hyaluronic acid's antibacterial activity and antioxidant activity. It had significant antibacterial action against strains of Staphylococcus aureus and Escherichia coli, with the IC<sub>50</sub> value obtained being 487.65 µg mL<sup>-1</sup> for antioxidant assay. Our molecular docking investigations of hyaluronic acid on tyrosyl-tRNA synthetase (Staphylococcus aureus: -6.13 kcal/mol, Escherichia coli: -5.79 kcal/mol) and topoisomerase II DNA gyrase (Staphylococcus aureus: -5.02 kcal/mol, Escherichia coli: -4.90 kcal/mol) confirmed the ligands' possible binding mode to the appropriate targets' sites. We also employed molecular dynamics simulation and showed that HA binds more strongly with 1JIL (-85.455 ± 12.623 kJ/mol) compared to 2YXN (-49.907 ± 64.191 kJ/mol), 5CDP (-47.285 ± 13.925 kJ/mol), and 6RKS (-45.306 ± 21.338 kJ/mol). We also report that the ligand forms several hydrogen bonds in molecular simulation, implying regular interaction with key residues of the enzymes. The results in this study indicate the potential use of HA in the vast field of applications having both asthetic and medicinal values.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"27-42"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct effects of dilute acid prehydrolysate inhibitors on enzymatic hydrolysis and yeast fermentation. 稀酸预水解抑制剂对酶水解和酵母发酵的不同影响。
IF 3.5 3区 生物学
Bioprocess and Biosystems Engineering Pub Date : 2025-01-01 Epub Date: 2024-10-26 DOI: 10.1007/s00449-024-03098-x
Xin Tan, Li Wen, Yanbin Li, Qin Zhang, Song Tang, Yequan Sheng, Chenhuan Lai
{"title":"Distinct effects of dilute acid prehydrolysate inhibitors on enzymatic hydrolysis and yeast fermentation.","authors":"Xin Tan, Li Wen, Yanbin Li, Qin Zhang, Song Tang, Yequan Sheng, Chenhuan Lai","doi":"10.1007/s00449-024-03098-x","DOIUrl":"10.1007/s00449-024-03098-x","url":null,"abstract":"<p><p>The effects of dilute acid prehydrolysate from poplar were investigated and compared in the enzymatic hydrolysis, fermentation, and simultaneous saccharification fermentation (SSF) in this study. The improvement of enzymatic hydrolysis and fermentation with resin adsorption and surfactant addition has also been represented. A total of 16 phenolic alcohols, aldehydes, acids and 3 furan derivatives in the prehydrolysates were identified and quantified by gas chromatography/mass spectrometry (GC/MS). The degree of inhibition from the phenolic compounds (26.55%) in prehydrolysate on the enzymatic hydrolysis was much higher than carbohydrates-derived inhibitors (0.52-4.64%). Around 40% degree of inhibition was eliminated in Avicel enzymatic hydrolysis when 75% of prehydrolysates phenolic compounds were removed by resin adsorption. This showed distinguishing inhibition degrees of various prehydrolysate phenolic compounds. Inhibition of prehydrolysate on enzymatic hydrolysis was more dosage-dependent, while their suppression on the fermentation showed a more complicated mode: fermentation could be terminated by the untreated prehydrolysate, while a small number of prehydrolysate inhibitors even improved the glucose consumption and ethanol production in the fermentation. Correlated with this distinct inhibition modes of prehydrolysate, the improvement of Tween 80 addition in SSF was around 7.10% for the final ethanol yield when the glucose accumulation was promoted by 76.6%.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"133-145"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信