Dual-purpose Bacillus subtilis fermentation: enhanced nattokinase production via oxygen-enriched fed-batch cultivation and natto starter preparation from harvested biomass.
IF 3.5 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Dual-purpose Bacillus subtilis fermentation: enhanced nattokinase production via oxygen-enriched fed-batch cultivation and natto starter preparation from harvested biomass.","authors":"Jiawen Zheng, Yaping Sun, Yunyu Liao, Peng Qin, Rongzhen Che, Jing-Yi Zhao, Zijun Xiao","doi":"10.1007/s00449-025-03151-3","DOIUrl":null,"url":null,"abstract":"<p><p>Nattokinase (NK) is one of the most important functional components in natto, but its content is low. In this study, the fermentation conditions using Bacillus subtilis JZ08-02 for high-yield NK production were investigated, and the residual bacterial pellets were used to prepare a natto starter. Batch fermentation of NK was conducted using a 5 L fermenter, and soybean milk and glucose were used as the substrates. When the stirring speed was increased from 450 to 650 rpm with air supply at 1.0 vvm, NK was increased from 4859 ± 142 to 12,294 ± 226 IU/mL. When pure oxygen was supplied, 15,013 ± 550 IU/mL of NK was obtained. When fed-batch fermentation was conducted, the titer was further elevated to 18,014 ± 112 IU/mL, which was increased by about 76% compared with the previous result. The experimental findings revealed that aeration control and nutrient feeding regimens exerted pronounced effects on NK productivity during submerged fermentation. The crude enzyme supernatant was obtained by centrifugation and the precipitate was collected. With optimized protectant, the bacterial pellets were freeze-dried with 90.1% cell survival rate. Using economical and edible feedstocks, this study achieved a significant enhancement in NK fermentation yield via oxygen-enriched fed-batch cultivation. At the same time, a natto starter was prepared as a by-product using the residual cell waste.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1039-1046"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03151-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nattokinase (NK) is one of the most important functional components in natto, but its content is low. In this study, the fermentation conditions using Bacillus subtilis JZ08-02 for high-yield NK production were investigated, and the residual bacterial pellets were used to prepare a natto starter. Batch fermentation of NK was conducted using a 5 L fermenter, and soybean milk and glucose were used as the substrates. When the stirring speed was increased from 450 to 650 rpm with air supply at 1.0 vvm, NK was increased from 4859 ± 142 to 12,294 ± 226 IU/mL. When pure oxygen was supplied, 15,013 ± 550 IU/mL of NK was obtained. When fed-batch fermentation was conducted, the titer was further elevated to 18,014 ± 112 IU/mL, which was increased by about 76% compared with the previous result. The experimental findings revealed that aeration control and nutrient feeding regimens exerted pronounced effects on NK productivity during submerged fermentation. The crude enzyme supernatant was obtained by centrifugation and the precipitate was collected. With optimized protectant, the bacterial pellets were freeze-dried with 90.1% cell survival rate. Using economical and edible feedstocks, this study achieved a significant enhancement in NK fermentation yield via oxygen-enriched fed-batch cultivation. At the same time, a natto starter was prepared as a by-product using the residual cell waste.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.