Lianggang Huang, Wenjia Wang, Kai Wang, Yurong Li, Junping Zhou, Aiping Pang, Bo Zhang, Zhiqiang Liu, Yuguo Zheng
{"title":"Protein rational design and modification of erythrose reductase for the improvement of erythritol production in Yarrowia lipolytica.","authors":"Lianggang Huang, Wenjia Wang, Kai Wang, Yurong Li, Junping Zhou, Aiping Pang, Bo Zhang, Zhiqiang Liu, Yuguo Zheng","doi":"10.1007/s00449-024-03057-6","DOIUrl":"10.1007/s00449-024-03057-6","url":null,"abstract":"<p><p>Erythritol is a natural non-caloric sweetener, which is produced by fermentation and extensively applied in food, medicine and chemical industries. The final step of the erythritol synthesis pathway is involved in erythritol reductase, whose activity and NADPH-dependent become the limiting node of erythritol production efficiency. Herein, we implemented a strategy combining molecular docking and thermal stability screening to construct an ER mutant library. And we successfully obtained a double mutant ER<sup>K26N/V295M</sup> (ER*) whose catalytic activity was 1.48 times that of wild-type ER. Through structural analysis and MD analysis, we found that the catalytic pocket and the enzyme stability of ER* were both improved. We overexpressed ER* in the engineered strain ΔKU70 to obtain the strain YLE-1. YLE-1 can produce 39.47 g/L of erythritol within 144 h, representing a 35% increase compared to the unmodified strain, and a 10% increase compared to the strain overexpressing wild-type ER. Considering the essentiality of NADPH supply, we further co-expressed ER* with two genes from the oxidative phase of PPP, ZWF1 and GND1. This resulted in the construction of YLE-3, which exhibited a significant increase in production, producing 47.85 g/L of erythritol within 144 h, representing a 63.90% increase compared to the original chassis strain. The productivity and the yield of the engineered strain YLE-3 were 0.33 g/L/h and 0.48 g/g glycerol, respectively. This work provided an ER mutation with excellent performance, and also proved the importance of cofactors in the process of erythritol synthesis, which will promote the industrial production of erythritol by metabolic engineering of Y. lipolytica.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1659-1668"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cellobionate production from sodium hydroxide pretreated wheat straw by engineered Neurospora crassa HL10.","authors":"Jiajie Wang, Takao Kasuga, Zhiliang Fan","doi":"10.1007/s00449-024-03061-w","DOIUrl":"10.1007/s00449-024-03061-w","url":null,"abstract":"<p><p>This study investigated cellobionate production from a lignocellulosic substrate using Neurospora crassa HL10. Utilizing NaOH-pretreated wheat straw as the substrate obviated the need for an exogenous redox mediator addition, as lignin contained in the pretreated wheat served as a natural mediator. The low laccase production by N. crassa HL10 on pretreated wheat straw caused slow cellobionate production, and exogenous laccase addition accelerated the process. Cycloheximide induced substantial laccase production in N. crassa HL10, enabling the strain to yield approximately 57 mM cellobionate from pretreated wheat straw (equivalent to 20 g/L cellulose), shortening the conversion time from 8 to 6 days. About 92% of the cellulose contained in the pretreated wheat straw is converted to cellobionate. In contrast to existing methods requiring pure cellobiose or cellulase enzymes, this process efficiently converts a low-cost feedstock into cellobionate at a high yield without enzyme or redox mediator supplementation.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1683-1690"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hee Ju Jung, Byungchan Kim, Tae-Rim Choi, Suk Jin Oh, Suwon Kim, Yeda Lee, Yuni Shin, Suhye Choi, Jinok Oh, So Yeon Park, Young Sik Lee, Young Heon Choi, Yung-Hun Yang
{"title":"Novel differential scanning calorimetry (DSC) application to select polyhydroxyalkanoate (PHA) producers correlating 3-hydroxyhexanoate (3-HHx) monomer with melting enthalpy.","authors":"Hee Ju Jung, Byungchan Kim, Tae-Rim Choi, Suk Jin Oh, Suwon Kim, Yeda Lee, Yuni Shin, Suhye Choi, Jinok Oh, So Yeon Park, Young Sik Lee, Young Heon Choi, Yung-Hun Yang","doi":"10.1007/s00449-024-03054-9","DOIUrl":"10.1007/s00449-024-03054-9","url":null,"abstract":"<p><p>Polyhydroxyalkanoate (PHA) is an environmental alternative to petroleum-based plastics because of its biodegradability. The polymer properties of PHA have been improved by the incorporation of different monomers. Traditionally, the monomer composition of PHA has been analyzed using gas chromatography (GC) and nuclear magnetic resonance (NMR), providing accurate monomer composition. However, sequential analysis of the thermal properties of PHA using differential scanning calorimetry (DSC) remains necessary, providing crucial insights into its thermal characteristics. To shorten the monomer composition and thermal property analysis, we directly applied DSC to the analysis of the obtained PHA film and observed a high correlation (r<sup>2</sup> = 0.98) between melting enthalpy and the 3-hydroxyhexanoate (3-HHx) mole fraction in the polymer. A higher 3-HHx fraction resulted in a lower melting enthalpy as 3-HHx provided the polymer with higher flexibility. Based on this, we selected the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)) producing strain from Cupriavidus strains that newly screened and transformed with vectors containing P(3HB-co-3HHx) biosynthetic genes, achieving an average error rate below 1.8% between GC and DSC results. Cupriavidus sp. BK2 showed a high 3-HHx mole fraction, up to 10.38 mol%, with T<sub>m </sub>(℃) = 171.5 and ΔH of T<sub>m</sub> (J/g) = 48.0, simultaneously detected via DSC. This study is an example of the expansion of DSC for PHA analysis from polymer science to microbial engineering.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1619-1631"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the potential activity of hyaluronic acid as an antimicrobial agent: experimental and computational validations.","authors":"Priya Shukla, Pradeep Srivastava, Abha Mishra","doi":"10.1007/s00449-024-03091-4","DOIUrl":"https://doi.org/10.1007/s00449-024-03091-4","url":null,"abstract":"<p><p>This century has seen the rise of antibiotic resistance as a significant public health problem. In addition, oxidative stress may also be a factor in selecting resistant strains of bacteria. The current study analyzed microbially produced hyaluronic acid's antibacterial activity and antioxidant activity. It had significant antibacterial action against strains of Staphylococcus aureus and Escherichia coli, with the IC<sub>50</sub> value obtained being 487.65 µg mL<sup>-1</sup> for antioxidant assay. Our molecular docking investigations of hyaluronic acid on tyrosyl-tRNA synthetase (Staphylococcus aureus: -6.13 kcal/mol, Escherichia coli: -5.79 kcal/mol) and topoisomerase II DNA gyrase (Staphylococcus aureus: -5.02 kcal/mol, Escherichia coli: -4.90 kcal/mol) confirmed the ligands' possible binding mode to the appropriate targets' sites. We also employed molecular dynamics simulation and showed that HA binds more strongly with 1JIL (-85.455 ± 12.623 kJ/mol) compared to 2YXN (-49.907 ± 64.191 kJ/mol), 5CDP (-47.285 ± 13.925 kJ/mol), and 6RKS (-45.306 ± 21.338 kJ/mol). We also report that the ligand forms several hydrogen bonds in molecular simulation, implying regular interaction with key residues of the enzymes. The results in this study indicate the potential use of HA in the vast field of applications having both asthetic and medicinal values.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shenghu Hao, Mei Xu, Lu Li, Luyao Wang, Zhongliang Su
{"title":"Enhancing isoprene production by supplementing mevalonate pathway expressed in E. coli with immobilized enzymes.","authors":"Shenghu Hao, Mei Xu, Lu Li, Luyao Wang, Zhongliang Su","doi":"10.1007/s00449-024-03093-2","DOIUrl":"https://doi.org/10.1007/s00449-024-03093-2","url":null,"abstract":"<p><p>Isoprene is an important component in rubber production, which can be produced using the E. coli mevalonic acid (MVA) pathway, and this method has the advantage of green environmental protection and sustainable. However, due to the excessive accumulation of intermediates, the growth of cells was inhibited and the enzyme activity decreased gradually, so it was difficult to increase the yield of isoprene. The immobilized enzyme has the characteristics of high stability and strong reusability, so in this study, the immobilized enzyme was added to the fermentation process of isoprene production by mevalonate metabolizing bacteria (PT-P), to explore the effect on isoprene synthesis. Under the optimum conditions, compared with PT-P fermentation alone, the enzyme catalyzes the conversion of MVA with an efficiency of up to 50.86%, and the yield of isoprene increased by about 30%, reaching 234.47 mg/L.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel stepwise salinity acclimation method to improve the survival of freshwater microalgae Haematococcus lacustris in seawater salinity.","authors":"Qianyi Gu, Yoshiki Takayama, Noriaki Natori, Minamo Hirahara, Anupreet Kaur Chowdhary, Tatsuki Toda","doi":"10.1007/s00449-024-03092-3","DOIUrl":"https://doi.org/10.1007/s00449-024-03092-3","url":null,"abstract":"<p><p>Freshwater microalga Haematococcus lacustris rich in astaxanthin, as a supplemental live diet can directly supply natural astaxanthin to the aquaculture organisms, except marine aquaculture organisms, since H. lacustris cannot tolerate seawater salinity. The objective of the present study is to provide a salinity acclimation method that allows H. lacustris to survive and accumulate astaxanthin with the aim of developing a novel supplemental live diet for marine aquaculture organisms. H. lacustris cultured in freshwater was subjected to different stepwise salinity acclimation processes (two-, three-, and four-shift). As the controls, H. lacustris was exposed to five constant salinities conditions (0, 0.05, 0.075, 0.3, and 0.6 M NaCl, respectively). Among the controls, almost all cells in the 0.3 M and 0.6 M NaCl conditions died immediately. In contrast, H. lacustris in the stepwise salinity acclimation processes survived in 0.6 M NaCl (equivalent to seawater salinity of 35 psu), showing the highest living-cell proportion (50.0%) and astaxanthin yield (0.72 mg·L<sup>-1</sup>) in the four-shift. The present study first demonstrated that H. lacustris tolerated seawater salinity through a stepwise acclimation process, proving a new strategy to supply live microalgal diets rich in natural astaxanthin for marine aquaculture.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siqi Du, Shaodong Guo, Jieru Yang, Anjie Li, Wenxuan Xiong, Chi Zhang, Shenghui Xu, Yuting Shi, Bin Ji
{"title":"Evaluating the efficacy of microalgal-bacterial granular sludge system in lake water remediation.","authors":"Siqi Du, Shaodong Guo, Jieru Yang, Anjie Li, Wenxuan Xiong, Chi Zhang, Shenghui Xu, Yuting Shi, Bin Ji","doi":"10.1007/s00449-024-03090-5","DOIUrl":"https://doi.org/10.1007/s00449-024-03090-5","url":null,"abstract":"<p><p>The microalgal-bacterial granular sludge (MBGS) process is attracting attention as a green wastewater treatment technology. However, research on the application of MBGS in lake water remediation is limited. Thus, this experiment investigated the feasibility and the efficacy of the MBGS process for the treatment of natural lake water in a continuous-flow tubular reactor. The average removal efficiencies of COD, NH<sub>4</sub><sup>+</sup>-N, NO<sub>3</sub><sup>-</sup>-N, NO<sub>2</sub><sup>-</sup>-N, TN, PO<sub>4</sub><sup>3-</sup>-P, TP, and turbidity by MBGS system in the day/night cycles were 50.10/61.39%, 63.52/75.23%, 43.37/73.57%, 90.72/93.48%, 78.30/80.02%, 71.13/74.62%, 65.08/70.57%, 92.32/89.84%, respectively. As the experiment progressed, the total chlorophyll content in MBGS decreased as the granule size increased, while the extracellular polymeric substances content increased, suggesting that the lake water contributed to bacterial growth and favored the stability of MBGS. Moreover, the eukaryotic microorganisms were dominated by Chlorophyta and Rotifera, and prokaryotic microorganisms were dominated by Proteobacteria in MBGS. By promoting the decomposition of various organic compounds in the lake water and inhibiting sludge expansion, these microorganisms help the MBGS system to maintain excellent granular characteristics and performance. Overall, the MBGS system proved to be a feasible option for the remediation of natural lake waters.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manickam Rajkumar, S. I. Davis Presley, Farid Menaa, Serag Eldin I. Elbehairi, Mohammad Y. Alfaifi, Ali A. Shati, Aishah E. Albalawi, Norah A. Althobaiti, Dharmalingam Kirubakaran, Prabha Govindaraj, Krishnan Meenambigai, Thandapani Gomathi
{"title":"Biosynthesis and biological activities of magnesium hydroxide nanoparticles using Tinospora cordifolia leaf extract","authors":"Manickam Rajkumar, S. I. Davis Presley, Farid Menaa, Serag Eldin I. Elbehairi, Mohammad Y. Alfaifi, Ali A. Shati, Aishah E. Albalawi, Norah A. Althobaiti, Dharmalingam Kirubakaran, Prabha Govindaraj, Krishnan Meenambigai, Thandapani Gomathi","doi":"10.1007/s00449-024-03089-y","DOIUrl":"https://doi.org/10.1007/s00449-024-03089-y","url":null,"abstract":"<p>The synthesis of magnesium hydroxide nanoparticles (Mg(OH)<sub>2</sub> NPs) using plant extracts are known to be a practical, economical, and an environmentally friendly approach. In this work, Mg(OH)<sub>2</sub> NPs were synthesized using aqueous leaf extract of <i>Tinospora cordifolia</i>, a medicinal plant commonly found in India. The synthesized Mg(OH)<sub>2</sub> NPs were characterized using various spectroscopic techniques. The ultraviolet–visible (UV–Vis) absorption peak of the Mg(OH)<sub>2</sub> NPs was detected at 289 nm, Fourier transform infrared (FTIR) analysis confirmed the presence of various functional groups, and X-ray diffraction (XRD) patterns revealed the well-crystallized structure of the Mg(OH)<sub>2</sub> NPs. High-resolution transmission electron microscopy (HR-TEM) and scanning electron microscopy (SEM) analyses depicted spherical morphology and an average particle size (PS) of 27.71 nm. The energy-dispersive X-ray (EDX) analysis confirmed the presence of C, O, and Mg elements, and the X-ray photoelectron spectroscopy (XPS) survey spectrum confirmed the elements for the Su 1<i> s</i> peak at 280.2 eV. The dynamic light scattering (DLS) analysis displayed an average PS of 54.3 nm, and the Zeta potential (ZP) was of 9.89 mV. The fabricated Mg(OH)<sub>2</sub> NPs displayed notable antibacterial activity against <i>S. epidermidis</i>, <i>E. coli</i>, and <i>S. aureus</i>. In addition, these NPs exhibited strong antioxidant properties (> 75%) based on DPPH, ABTS, and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) assays. Further, the same NPs exerted a potent anti-inflammatory activity (> 65%) based on COX-1 and COX-2 evaluations. The anti-Alzheimer’ disease (AD) potential of Mg(OH)<sub>2</sub> NPs was assessed through effective inhibition (> 70%) of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities. Molecular docking (MD) studies confirmed that caryophyllene has higher binding affinity with AChE (−5.3 kcal/mol) and BuChE (−6.4 kcal/mol) enzymes. This study emphasizes the green synthesis of Mg(OH)<sub>2</sub> NPs using <i>T. cordifolia</i> as a plant source and highlights their potential for biomedical applications.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":"1 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hybrid substrate-based pH autobuffering GABA fermentation by Levilactobacillus brevis CD0817","authors":"Lingqin Wang, Mengya Jia, Dandan Gao, Haixing Li","doi":"10.1007/s00449-024-03088-z","DOIUrl":"https://doi.org/10.1007/s00449-024-03088-z","url":null,"abstract":"<p>The probiotic fermentation of the bioactive substance gamma-aminobutyric acid (GABA) is an attractive research topic. There is still room for further improvement in reported GABA fermentation methods based on a single substrate (<span>l</span>-glutamic acid or <span>l</span>-monosodium glutamate). Here, we devised a pH auto-buffering strategy to facilitate the fermentation of GABA by <i>Levilactobacillus brevis</i> CD0817. This strategy features a mixture of neutral monosodium <span>l</span>-glutamate plus acidic <span>l</span>-glutamic acid as the substrate. This mixture provides a mild initial pH; moreover, the newly dissolved <span>l</span>-glutamic acid automatically offsets the pH increase caused by substrate decarboxylation, maintaining the acidity essential for GABA fermentation. In this study, a flask trial was first performed to optimize the GABA fermentation parameters of <i>Levilactobacillus brevis</i> CD0817. The optimized parameters were further validated in a 10 L fermenter. The flask trial results revealed that the appropriate fermentation medium was composed of powdery <span>l</span>-glutamic acid (750 g/L), monosodium <span>l</span>-glutamate (34 g/L [0.2 mol/L]), glucose (5 g/L), yeast extract (35 g/L), MnSO<sub>4</sub>·H<sub>2</sub>O (50 mg/L [0.3 mmol/L]), and Tween 80 (1.0 g/L). The appropriate fermentation temperature was 30 °C. The fermenter trial results revealed that GABA was slowly synthesized from 0–4 h, rapidly synthesized until 32 h, and finally reached 353.1 ± 8.3 g/L at 48 h, with the pH increasing from the initial value of 4.56 to the ultimate value of 6.10. The proposed pH auto-buffering strategy may be popular for other GABA fermentations.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":"12 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andressa Janaína Warken, Simone Kubeneck, Aline Frumi Camargo, Vitória Dassoler Longo, Larissa Capeletti Romani, Gabriel Henrique Klein, Sérgio L. Alves, Maulin P. Shah, Helen Treichel
{"title":"Production and concentration of keratinases and application of fermentation residual in removing hexavalent chromium","authors":"Andressa Janaína Warken, Simone Kubeneck, Aline Frumi Camargo, Vitória Dassoler Longo, Larissa Capeletti Romani, Gabriel Henrique Klein, Sérgio L. Alves, Maulin P. Shah, Helen Treichel","doi":"10.1007/s00449-024-03087-0","DOIUrl":"https://doi.org/10.1007/s00449-024-03087-0","url":null,"abstract":"<p>The production of keratinases was evaluated in submerged fermentation with <i>Aspergillus niger</i> and by pigs’ swine hair in a batch bioreactor. Experimental planning was performed to assess the interaction between different variables. The enzyme extract produced was characterized at various pH and temperatures and subjected to enzyme concentration using a biphasic aqueous system and salt/solvent precipitation techniques. In addition, the substrate’s potential in reducing hexavalent chromium from synthetic potassium dichromate effluent with an initial concentration of 20 mg L<sup>−1</sup> of chromium was evaluated. The resulting enzyme extract showed 89 ± 2 U mL<sup>−1</sup> of keratinase. The enzyme concentration resulted in a purification factor of 1.3, while sodium chloride/acetone and ammonium sulfate/acetone resulted in a purification factor of 1.9 and 1.4, respectively. Still using the residual substrate of swine hair from the fermentation, a 94% reduction of hexavalent chromium concentration occurred after 9 h of reaction. Thus, the study proved relevant for producing keratinases, with further environmental applicability and the possibility of concentrating the extract via low-cost processes.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":"29 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}