芦丁纳米配方研究现状一种有前景的生物活性化合物,具有更高的功效。

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bioprocess and Biosystems Engineering Pub Date : 2025-06-01 Epub Date: 2025-03-28 DOI:10.1007/s00449-025-03156-y
Maryam Malekpour, Alireza Ebrahiminezhad, Zeinab Karimi, Mahdiyar Iravani Saadi, Aydin Berenjian
{"title":"芦丁纳米配方研究现状一种有前景的生物活性化合物,具有更高的功效。","authors":"Maryam Malekpour, Alireza Ebrahiminezhad, Zeinab Karimi, Mahdiyar Iravani Saadi, Aydin Berenjian","doi":"10.1007/s00449-025-03156-y","DOIUrl":null,"url":null,"abstract":"<p><p>Rutin is an herbal polyphenolic compound recognized for its numerous therapeutic benefits, including antioxidant, anticancer, and antimicrobial properties. However, its application in biomedical fields encounters significant challenges, such as low solubility, poor absorption, low bioavailability, short half-life, and rapid metabolism. In recent years, advancements in nanotechnology have presented promising solutions to these limitations. Consequently, various nano-formulation strategies have been developed to enhance rutin's solubility, absorption, and overall efficacy. These strategies can be broadly categorized into two approaches. The first involves transforming rutin into nanocrystals without the use of any secondary compounds. The second approach entails nano-formulating rutin with other compounds, including proteins, polysaccharides, lipids, polymers, and metals. This study offers a review of these approaches and their applications in biomedical sciences, focusing on their categories, preparation methods, and biomedical properties. Initially, the pharmacological potential of rutin, its application in recent clinical trials, and its mechanisms of action are outlined. Next, it explores how nano-carriers can enhance rutin's bioavailability. Subsequently, the types of nanostructures employed are categorized, along with a discussion of their fabrication methods and benefits. In some instances, certain drawbacks are also reported. The data provided can guide the selection of optimal strategies for rutin nano-formulation, based on the intended biomedical application.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"877-898"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current strategies for rutin nano-formulation; a promising bioactive compound with increased efficacy.\",\"authors\":\"Maryam Malekpour, Alireza Ebrahiminezhad, Zeinab Karimi, Mahdiyar Iravani Saadi, Aydin Berenjian\",\"doi\":\"10.1007/s00449-025-03156-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rutin is an herbal polyphenolic compound recognized for its numerous therapeutic benefits, including antioxidant, anticancer, and antimicrobial properties. However, its application in biomedical fields encounters significant challenges, such as low solubility, poor absorption, low bioavailability, short half-life, and rapid metabolism. In recent years, advancements in nanotechnology have presented promising solutions to these limitations. Consequently, various nano-formulation strategies have been developed to enhance rutin's solubility, absorption, and overall efficacy. These strategies can be broadly categorized into two approaches. The first involves transforming rutin into nanocrystals without the use of any secondary compounds. The second approach entails nano-formulating rutin with other compounds, including proteins, polysaccharides, lipids, polymers, and metals. This study offers a review of these approaches and their applications in biomedical sciences, focusing on their categories, preparation methods, and biomedical properties. Initially, the pharmacological potential of rutin, its application in recent clinical trials, and its mechanisms of action are outlined. Next, it explores how nano-carriers can enhance rutin's bioavailability. Subsequently, the types of nanostructures employed are categorized, along with a discussion of their fabrication methods and benefits. In some instances, certain drawbacks are also reported. The data provided can guide the selection of optimal strategies for rutin nano-formulation, based on the intended biomedical application.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"877-898\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-025-03156-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03156-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

芦丁是一种草药多酚化合物,被认为具有许多治疗益处,包括抗氧化、抗癌和抗菌特性。然而,其在生物医学领域的应用面临着溶解度低、吸收性差、生物利用度低、半衰期短、代谢快等重大挑战。近年来,纳米技术的进步为这些限制提供了有希望的解决方案。因此,人们开发了各种纳米配方策略来提高芦丁的溶解度、吸收和整体功效。这些策略可以大致分为两种方法。第一种方法是在不使用任何二级化合物的情况下将芦丁转化为纳米晶体。第二种方法需要将芦丁与其他化合物(包括蛋白质、多糖、脂质、聚合物和金属)纳米配方。本文综述了这些方法及其在生物医学领域的应用,重点介绍了它们的分类、制备方法和生物医学特性。首先,概述了芦丁的药理潜力,它在最近的临床试验中的应用,以及它的作用机制。接下来,探讨纳米载体如何提高芦丁的生物利用度。随后,对所采用的纳米结构进行了分类,并讨论了它们的制造方法和优点。在某些情况下,还报告了某些缺点。所提供的数据可以指导基于预期生物医学应用的芦丁纳米配方的最佳策略选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Current strategies for rutin nano-formulation; a promising bioactive compound with increased efficacy.

Rutin is an herbal polyphenolic compound recognized for its numerous therapeutic benefits, including antioxidant, anticancer, and antimicrobial properties. However, its application in biomedical fields encounters significant challenges, such as low solubility, poor absorption, low bioavailability, short half-life, and rapid metabolism. In recent years, advancements in nanotechnology have presented promising solutions to these limitations. Consequently, various nano-formulation strategies have been developed to enhance rutin's solubility, absorption, and overall efficacy. These strategies can be broadly categorized into two approaches. The first involves transforming rutin into nanocrystals without the use of any secondary compounds. The second approach entails nano-formulating rutin with other compounds, including proteins, polysaccharides, lipids, polymers, and metals. This study offers a review of these approaches and their applications in biomedical sciences, focusing on their categories, preparation methods, and biomedical properties. Initially, the pharmacological potential of rutin, its application in recent clinical trials, and its mechanisms of action are outlined. Next, it explores how nano-carriers can enhance rutin's bioavailability. Subsequently, the types of nanostructures employed are categorized, along with a discussion of their fabrication methods and benefits. In some instances, certain drawbacks are also reported. The data provided can guide the selection of optimal strategies for rutin nano-formulation, based on the intended biomedical application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信