{"title":"芦丁纳米配方研究现状一种有前景的生物活性化合物,具有更高的功效。","authors":"Maryam Malekpour, Alireza Ebrahiminezhad, Zeinab Karimi, Mahdiyar Iravani Saadi, Aydin Berenjian","doi":"10.1007/s00449-025-03156-y","DOIUrl":null,"url":null,"abstract":"<p><p>Rutin is an herbal polyphenolic compound recognized for its numerous therapeutic benefits, including antioxidant, anticancer, and antimicrobial properties. However, its application in biomedical fields encounters significant challenges, such as low solubility, poor absorption, low bioavailability, short half-life, and rapid metabolism. In recent years, advancements in nanotechnology have presented promising solutions to these limitations. Consequently, various nano-formulation strategies have been developed to enhance rutin's solubility, absorption, and overall efficacy. These strategies can be broadly categorized into two approaches. The first involves transforming rutin into nanocrystals without the use of any secondary compounds. The second approach entails nano-formulating rutin with other compounds, including proteins, polysaccharides, lipids, polymers, and metals. This study offers a review of these approaches and their applications in biomedical sciences, focusing on their categories, preparation methods, and biomedical properties. Initially, the pharmacological potential of rutin, its application in recent clinical trials, and its mechanisms of action are outlined. Next, it explores how nano-carriers can enhance rutin's bioavailability. Subsequently, the types of nanostructures employed are categorized, along with a discussion of their fabrication methods and benefits. In some instances, certain drawbacks are also reported. The data provided can guide the selection of optimal strategies for rutin nano-formulation, based on the intended biomedical application.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"877-898"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current strategies for rutin nano-formulation; a promising bioactive compound with increased efficacy.\",\"authors\":\"Maryam Malekpour, Alireza Ebrahiminezhad, Zeinab Karimi, Mahdiyar Iravani Saadi, Aydin Berenjian\",\"doi\":\"10.1007/s00449-025-03156-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rutin is an herbal polyphenolic compound recognized for its numerous therapeutic benefits, including antioxidant, anticancer, and antimicrobial properties. However, its application in biomedical fields encounters significant challenges, such as low solubility, poor absorption, low bioavailability, short half-life, and rapid metabolism. In recent years, advancements in nanotechnology have presented promising solutions to these limitations. Consequently, various nano-formulation strategies have been developed to enhance rutin's solubility, absorption, and overall efficacy. These strategies can be broadly categorized into two approaches. The first involves transforming rutin into nanocrystals without the use of any secondary compounds. The second approach entails nano-formulating rutin with other compounds, including proteins, polysaccharides, lipids, polymers, and metals. This study offers a review of these approaches and their applications in biomedical sciences, focusing on their categories, preparation methods, and biomedical properties. Initially, the pharmacological potential of rutin, its application in recent clinical trials, and its mechanisms of action are outlined. Next, it explores how nano-carriers can enhance rutin's bioavailability. Subsequently, the types of nanostructures employed are categorized, along with a discussion of their fabrication methods and benefits. In some instances, certain drawbacks are also reported. The data provided can guide the selection of optimal strategies for rutin nano-formulation, based on the intended biomedical application.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"877-898\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-025-03156-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03156-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Current strategies for rutin nano-formulation; a promising bioactive compound with increased efficacy.
Rutin is an herbal polyphenolic compound recognized for its numerous therapeutic benefits, including antioxidant, anticancer, and antimicrobial properties. However, its application in biomedical fields encounters significant challenges, such as low solubility, poor absorption, low bioavailability, short half-life, and rapid metabolism. In recent years, advancements in nanotechnology have presented promising solutions to these limitations. Consequently, various nano-formulation strategies have been developed to enhance rutin's solubility, absorption, and overall efficacy. These strategies can be broadly categorized into two approaches. The first involves transforming rutin into nanocrystals without the use of any secondary compounds. The second approach entails nano-formulating rutin with other compounds, including proteins, polysaccharides, lipids, polymers, and metals. This study offers a review of these approaches and their applications in biomedical sciences, focusing on their categories, preparation methods, and biomedical properties. Initially, the pharmacological potential of rutin, its application in recent clinical trials, and its mechanisms of action are outlined. Next, it explores how nano-carriers can enhance rutin's bioavailability. Subsequently, the types of nanostructures employed are categorized, along with a discussion of their fabrication methods and benefits. In some instances, certain drawbacks are also reported. The data provided can guide the selection of optimal strategies for rutin nano-formulation, based on the intended biomedical application.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.