Bioelectromagnetics最新文献

筛选
英文 中文
Correction to “The effects of weak magnetic fields on radical pairs” 修正“弱磁场对自由基对的影响”。
IF 1.9 3区 生物学
Bioelectromagnetics Pub Date : 2023-08-09 DOI: 10.1002/bem.22480
{"title":"Correction to “The effects of weak magnetic fields on radical pairs”","authors":"","doi":"10.1002/bem.22480","DOIUrl":"10.1002/bem.22480","url":null,"abstract":"<p>Barnes, F.S., Greenebaum, B.: The effects of weak magnetic fields on radical pairs. Bioelectromagnetics 36, 45–54 (2015). https://doi.org/10.1002/bem.21883</p><p>The text in the lines preceding Equation (2) should read:</p><p>The section below should be deleted:</p><p>“where neq is the number of … by a factor of 2.”</p><p>We apologize for these errors.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22480","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10014100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of exposure to radiofrequency LTE signal and coexposure to mitomycin-C in Chinese hamster lung fibroblast V79 cells 中国仓鼠肺成纤维细胞 V79 暴露于射频 LTE 信号和同时暴露于丝裂霉素-C 的影响。
IF 1.9 3区 生物学
Bioelectromagnetics Pub Date : 2023-07-26 DOI: 10.1002/bem.22478
Anna Sannino PhD, Stefania Romeo PhD, Maria Rosaria Scarfì, Daniele Pinchera PhD, Fulvio Schettino PhD, Mario Alonzo PhD, Mariateresa Allocca PhD, Olga Zeni PhD
{"title":"The effect of exposure to radiofrequency LTE signal and coexposure to mitomycin-C in Chinese hamster lung fibroblast V79 cells","authors":"Anna Sannino PhD,&nbsp;Stefania Romeo PhD,&nbsp;Maria Rosaria Scarfì,&nbsp;Daniele Pinchera PhD,&nbsp;Fulvio Schettino PhD,&nbsp;Mario Alonzo PhD,&nbsp;Mariateresa Allocca PhD,&nbsp;Olga Zeni PhD","doi":"10.1002/bem.22478","DOIUrl":"10.1002/bem.22478","url":null,"abstract":"<p>This study aims to investigate the cellular effects of radiofrequency exposure, 1950 MHz, long-term evolution (LTE) signal, administered alone and in combination with mitomycin-C (MMC), a well-known cytotoxic agent. Chinese hamster lung fibroblast (V79) cells were exposed/sham exposed in a waveguide-based system under strictly controlled conditions of both electromagnetic and environmental parameters, at specific absorption rate (SAR) of 0.3 and 1.25 W/kg. Chromosomal damage (micronuclei formation), oxidative stress (reactive oxygen species [ROS] formation), and cell cycle progression were analyzed after exposure and coexposure. No differences between exposed samples and sham-controls were detected following radiofrequency exposure alone, for all the experimental conditions tested and biological endpoints investigated. When radiofrequency exposure was followed by MMC treatment, 3 h pre-exposure did not modify MMC-induced micronuclei. Pre-exposure of 20 h at 0.3 W/kg did not modify the number of micronuclei induced by MMC, while 1.25 W/kg resulted in a significant reduction of MMC-induced damage. Absence of effects was also detected when CW was used, at both SAR levels. MMC-induced ROS formation resulted significantly decreased at both SAR levels investigated, while cell proliferation and cell cycle progression were not affected by coexposures. The results here reported provide no evidence of direct effects of 1950 MHz, LTE signal. Moreover, they further support our previous findings on the capability of radiofrequency pre-exposure to induce protection from a subsequent toxic treatment, and the key role of the modulated signals and the experimental conditions adopted in eliciting the effect.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22478","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9870616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of combined effects of brief electrical stimulation and Schwann-like cells on sciatic nerve injury model 短暂电刺激与雪旺样细胞联合作用对坐骨神经损伤模型的影响。
IF 1.9 3区 生物学
Bioelectromagnetics Pub Date : 2023-07-18 DOI: 10.1002/bem.22479
Mahmut Alp Kilic PhD, Aynur Abdulova MSc, Gamze Tanriverdi PhD, Mehmet Dincer Bilgin PhD
{"title":"Evaluation of combined effects of brief electrical stimulation and Schwann-like cells on sciatic nerve injury model","authors":"Mahmut Alp Kilic PhD,&nbsp;Aynur Abdulova MSc,&nbsp;Gamze Tanriverdi PhD,&nbsp;Mehmet Dincer Bilgin PhD","doi":"10.1002/bem.22479","DOIUrl":"10.1002/bem.22479","url":null,"abstract":"<p>Severe nerve injuries can be treated with electrical stimulation and stem cell therapies, but little is known about the potential benefits of combining these two treatments. In an effort to investigate this combination, we conducted a study to evaluate the effectiveness of electrical stimulation and Schwann-like cell transplantation in female Wistar albino rats. Our study consisted of five groups of rats: a sham group, an injury group, an electrical stimulation group, a Schwann-like cell group, and a combination group. The experimental groups received electrical stimulation, Schwann-like cell transplantation, or both. The animals sciatic function index was evaluated during a 6-week recovery period, and nerve conduction velocity, wet muscle mass, and nerve tissues were also analyzed. The results of the study showed that all experimental groups had a faster functional recovery compared to the injury group, although the difference between groups was not statistically significant. Both the combination group and the Schwann-like cell transplantation group had a higher nerve conduction velocity compared to the other experimental groups. However, there was no significant difference between the combination and Schwann-like cell transplantation groups. Nonetheless, histological analysis showed a better axonal reorganization in the combination group. The study provides preliminary evidence of the potential benefits of combining electrical stimulation and Schwann-like cell transplantation in treating severe nerve injuries. However, further studies with larger sample sizes are needed to confirm these findings and optimize the treatment parameters.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9822495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new synthesis method for complex electric field patterning using a multichannel dense array system with applications in low-intensity noninvasive neuromodulation 一种利用多通道密集阵列系统合成复杂电场图的新方法,在低强度无创神经调节中的应用。
IF 1.9 3区 生物学
Bioelectromagnetics Pub Date : 2023-07-15 DOI: 10.1002/bem.22476
Matthew C. Smith PhD, Daniel F. Sievenpiper PhD
{"title":"A new synthesis method for complex electric field patterning using a multichannel dense array system with applications in low-intensity noninvasive neuromodulation","authors":"Matthew C. Smith PhD,&nbsp;Daniel F. Sievenpiper PhD","doi":"10.1002/bem.22476","DOIUrl":"10.1002/bem.22476","url":null,"abstract":"<p>Multichannel coil array systems offer precise spatiotemporal electronic steering and patterning of electric and magnetic fields without the physical movement of coils or magnets. This capability could potentially benefit a wide range of biomagnetic applications such as low-intensity noninvasive neuromodulation or magnetic drug delivery. In this regard, the objective of this work is to develop a unique synthesis method, that enabled by a multichannel dense array system, generates complex current pattern distributions not previously reported in the literature. Simulations and experimental results verify that highly curved or irregular (e.g., zig–zag) patterns at singular and multiple sites can be efficiently formed using this method. The synthesis method is composed of three primary components; a <i>pixel cell</i> (basic unit of pattern formation), a <i>template array</i> (“virtual array”: code that disseminates the coil current weights to the “physical” dense array), and a hexagonal coordinate system. Low-intensity or low-field magnetic stimulation is identified as a potential application that could benefit from this work in the future and as such is used as an example to frame the research.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9834922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in Gene Expression After Exposing Arabidopsis thaliana Plants to Nanosecond High Amplitude Electromagnetic Field Pulses 拟南芥暴露于纳秒级高幅电磁场脉冲后的基因表达变化。
IF 1.9 3区 生物学
Bioelectromagnetics Pub Date : 2023-07-06 DOI: 10.1002/bem.22475
Alexis Porcher, Nancy Wilmot, Pierre Bonnet, Vincent Procaccio, Alain Vian
{"title":"Changes in Gene Expression After Exposing Arabidopsis thaliana Plants to Nanosecond High Amplitude Electromagnetic Field Pulses","authors":"Alexis Porcher,&nbsp;Nancy Wilmot,&nbsp;Pierre Bonnet,&nbsp;Vincent Procaccio,&nbsp;Alain Vian","doi":"10.1002/bem.22475","DOIUrl":"10.1002/bem.22475","url":null,"abstract":"<p>The biological effects of exposure to electromagnetic fields due to wireless technologies and connected devices are a subject of particular research interest. Ultrashort high-amplitude electromagnetic field pulses delivered to biological samples using immersed electrodes in a dedicated cuvette have widely demonstrated their effectiveness in triggering several cell responses including increased cytosolic calcium concentration and reactive oxygen species (ROS) production. In contrast, the effects of these pulses are poorly documented when electromagnetic pulses are delivered through an antenna. Here we exposed <i>Arabidopsis thaliana</i> plants to 30,000 pulses (237  kV m<sup>−1</sup>, 280 ps rise-time, duration of 500 ps) emitted through a Koshelev antenna and monitored the consequences of electromagnetic fields exposure on the expression levels of several key genes involved in calcium metabolism, signal transduction, ROS, and energy status. We found that this treatment was mostly unable to trigger significant changes in the messenger RNA accumulation of calmodulin, Zinc-Finger protein <i>ZAT12</i>, NADPH oxidase/respiratory burst oxidase homolog (<i>RBOH</i>) isoforms D and F, Catalase (<i>CAT2</i>), glutamate-cystein ligase (<i>GSH1</i>), glutathione synthetase (<i>GSH2</i>), Sucrose non-fermenting-related Kinase 1 (<i>SnRK1</i>) and Target of rapamycin (<i>TOR</i>). In contrast, Ascorbate peroxidases <i>APX-1</i> and APX-6 were significantly induced 3 h after the exposure. These results suggest that this treatment, although quite strong in amplitude, is mostly ineffective in inducing biological effects at the transcriptional level when delivered by an antenna. © 2023 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22475","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10114420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information - Page 问题信息-页面
IF 1.9 3区 生物学
Bioelectromagnetics Pub Date : 2023-06-27 DOI: 10.1002/bem.22477
{"title":"Issue Information - Page","authors":"","doi":"10.1002/bem.22477","DOIUrl":"10.1002/bem.22477","url":null,"abstract":"","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22477","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43812494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulsed Electromagnetic Fields Improved Peripheral Nerve Regeneration After Delayed Repair of One Month 脉冲电磁场对延迟修复1个月后周围神经再生的促进作用。
IF 1.9 3区 生物学
Bioelectromagnetics Pub Date : 2023-06-05 DOI: 10.1002/bem.22443
Zhu Keyan, Zhang Liqian, Xu Xinzhong, Jing Juehua, Xu Chungui
{"title":"Pulsed Electromagnetic Fields Improved Peripheral Nerve Regeneration After Delayed Repair of One Month","authors":"Zhu Keyan,&nbsp;Zhang Liqian,&nbsp;Xu Xinzhong,&nbsp;Jing Juehua,&nbsp;Xu Chungui","doi":"10.1002/bem.22443","DOIUrl":"10.1002/bem.22443","url":null,"abstract":"The goal of this study was to determine if postoperative pulsed electromagnetic fields (PEMFs) could improve the neuromuscular rehabilitation after delayed repair of peripheral nerve injuries. Thirty‐six Sprague–Dawley rats were randomly divided into sham group, control group, and PEMFs group. The sciatic nerves were transected except for the control group. One month later, the nerve ends of the former two groups were reconnected. PEMFs group of rats was subjected to PEMFs thereafter. Control group and sham group received no treatment. Four and 8 weeks later, morphological and functional changes were measured. Four and eight weeks postoperatively, compared to sham group, the sciatic functional indices (SFIs) of PEMFs group were higher. More axons regenerated distally in PEMFs group. The fiber diameters of PEMFs group were larger. However, the axon diameters and myelin thicknesses were not different between these two groups. The brain‐derived neurotrophic factor and vascular endothelial growth factor expressions were higher in PEMFs group after 8 weeks. Semi‐quantitative IOD analysis for the intensity of positive staining indicated that there were more BDNF, VEGF, and NF200 in PEMFs group. It's concluded that PEMFs have effect on the axonal regeneration after delayed nerve repair of one month. The upregulated expressions of BDNF and VEGF may play roles in this process. © 2023 Bioelectromagnetics Society.","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9579404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differences in the Optical Response of MSU and CPP Crystals During Magnetic Orientation: Possibility of Diagnosing Gout and Pseudogout 磁取向过程中MSU和CPP晶体光响应的差异:诊断痛风和伪痛风的可能性。
IF 1.9 3区 生物学
Bioelectromagnetics Pub Date : 2023-05-08 DOI: 10.1002/bem.22444
Yuka Takeuchi, Ryotaro Yoshikawa, Yoshifuru Mitsui, Masakazu Iwasaka, Mizushi Matsuda, Atom Hamasaki
{"title":"Differences in the Optical Response of MSU and CPP Crystals During Magnetic Orientation: Possibility of Diagnosing Gout and Pseudogout","authors":"Yuka Takeuchi,&nbsp;Ryotaro Yoshikawa,&nbsp;Yoshifuru Mitsui,&nbsp;Masakazu Iwasaka,&nbsp;Mizushi Matsuda,&nbsp;Atom Hamasaki","doi":"10.1002/bem.22444","DOIUrl":"10.1002/bem.22444","url":null,"abstract":"<p>Pseudogout is crystalline arthritis. It has a similar clinical picture to that of gout, and it is difficult to distinguish the two diseases using conventional analysis methods. However, it is important to identify the different crystals responsible for these two cases because the treatment strategies are different. In a previous study, we reported magnetic orientation of monosodium urate (MSU) crystals, which are the causative agent of gout, at the permanent magnet level. In this study, we investigated the effect of an applied magnetic field on calcium pyrophosphate (CPP) crystals, which are the causative agent of pseudogout, and the difference in the magnetic responses of CPP and MSU crystals. We found that the CPP crystals were oriented in a magnetic field on milli-Tesla order because of the anisotropy of the diamagnetic susceptibility. In addition, the CPP crystals exhibited different anisotropic magnetic properties from those of MSU crystals, which led to a characteristic difference between the orientations of the two crystals. That is, we found that the causative agents of gout and pseudogout responded differently to a magnetic field. This report suggests that the discrimination between CPP and MSU by optical measurements is possible by application of magnetic fields appropriately. © 2023 Bioelectromagnetics Society.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9432397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Meaningful Attempt: Applying Dielectric Barrier Discharge Plasma to Induce Polarization of Macrophages 介质阻挡放电等离子体诱导巨噬细胞极化的一次有意义的尝试
IF 1.9 3区 生物学
Bioelectromagnetics Pub Date : 2023-04-27 DOI: 10.1002/bem.22446
Haoran Yu, Wendan Cheng, Chengbiao Ding, Ziyu Li, Wenchong Ouyang, Qi Liu, Zhengwei Wu, Juehua Jing
{"title":"A Meaningful Attempt: Applying Dielectric Barrier Discharge Plasma to Induce Polarization of Macrophages","authors":"Haoran Yu,&nbsp;Wendan Cheng,&nbsp;Chengbiao Ding,&nbsp;Ziyu Li,&nbsp;Wenchong Ouyang,&nbsp;Qi Liu,&nbsp;Zhengwei Wu,&nbsp;Juehua Jing","doi":"10.1002/bem.22446","DOIUrl":"10.1002/bem.22446","url":null,"abstract":"<p>Macrophage polarization plays an important role in many macrophage-related diseases. This study was designed to preliminarily explore the effects of dielectric barrier discharge (DBD) plasma on the polarization direction and cell activity of macrophages with different phenotypes (ie, M0, M1, and M2). The M1 macrophage marker inducible nitric oxide synthase (iNOS) and M2 macrophage marker cluster of differentiation 206 (CD206) were detected by western blot (WB). The effects of DBD plasma on macrophage viability were analyzed by using a cell counting kit-8 detection kit. M0, M1, and M2 macrophages exhibited a decrease in iNOS expression and an increase in CD206 expression after the DBD plasma intervention. Additionally, the decrease in macrophage viability remained non-significant after initiating the intervention. DBD plasma can promote the transformation of M0 and M1 macrophages to M2 macrophages, and can further enhance the expression of the M2 macrophage phenotype marker CD206. Our study not only demonstrates the potential therapeutic value of DBD plasma for macrophage-related diseases, but it also provides a new direction for research to improve the treatment of macrophage-related diseases. © 2023 Bioelectromagnetics Society.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9685395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information - Page 发行信息‐页面
IF 1.9 3区 生物学
Bioelectromagnetics Pub Date : 2023-04-24 DOI: 10.1002/bem.22448
{"title":"Issue Information - Page","authors":"","doi":"10.1002/bem.22448","DOIUrl":"10.1002/bem.22448","url":null,"abstract":"","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22448","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42082906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信