A real-time working memory evaluation system for macaques in microwave fields

IF 1.8 3区 生物学 Q3 BIOLOGY
Bowen Li MSc, Xueyan Zhang PhD, Nan Qiao MSc, Jiawei Chen MSc, Weijie Bi, Weijia Zhi PhD, Lizhen Ma PhD, Congcong Miao, Lifeng Wang PhD, Yong Zou PhD, Xiangjun Hu PhD
{"title":"A real-time working memory evaluation system for macaques in microwave fields","authors":"Bowen Li MSc,&nbsp;Xueyan Zhang PhD,&nbsp;Nan Qiao MSc,&nbsp;Jiawei Chen MSc,&nbsp;Weijie Bi,&nbsp;Weijia Zhi PhD,&nbsp;Lizhen Ma PhD,&nbsp;Congcong Miao,&nbsp;Lifeng Wang PhD,&nbsp;Yong Zou PhD,&nbsp;Xiangjun Hu PhD","doi":"10.1002/bem.22519","DOIUrl":null,"url":null,"abstract":"<p>With the development and widespread application of electromagnetic technology, the health hazards of electromagnetic radiation have attracted much attention and concern. The effect of electromagnetic radiation on the nervous system, especially on learning, memory, and cognitive functions, is an important research topic in the field of electromagnetic biological effects. Most previous studies were conducted with rodents, which are relatively mature. As research has progressed, studies using non-human primates as experimental subjects have been carried out. Compared to rodents, non-human primates such as macaques not only have brain structures more similar to those of humans but also exhibit learning and memory processes that are similar. In this paper, we present a behavioral test system for the real-time evaluation of the working memory (WM) of macaques in a microwave environment. The system consists of two parts: hardware and software. The hardware consists of four modules: the operation terminal, the control terminal, the optical signal transmission, and detection module and the reward feedback module. The software program can implement the feeding learning task, the button-pressing learning task, and the delayed match-to-sample task. The device is useful for the real-time evaluation of the WM of macaques in microwave environments, showing good electromagnetic compatibility, a simple and reliable structure, and easy operation.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 7","pages":"338-347"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22519","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the development and widespread application of electromagnetic technology, the health hazards of electromagnetic radiation have attracted much attention and concern. The effect of electromagnetic radiation on the nervous system, especially on learning, memory, and cognitive functions, is an important research topic in the field of electromagnetic biological effects. Most previous studies were conducted with rodents, which are relatively mature. As research has progressed, studies using non-human primates as experimental subjects have been carried out. Compared to rodents, non-human primates such as macaques not only have brain structures more similar to those of humans but also exhibit learning and memory processes that are similar. In this paper, we present a behavioral test system for the real-time evaluation of the working memory (WM) of macaques in a microwave environment. The system consists of two parts: hardware and software. The hardware consists of four modules: the operation terminal, the control terminal, the optical signal transmission, and detection module and the reward feedback module. The software program can implement the feeding learning task, the button-pressing learning task, and the delayed match-to-sample task. The device is useful for the real-time evaluation of the WM of macaques in microwave environments, showing good electromagnetic compatibility, a simple and reliable structure, and easy operation.

微波场中猕猴工作记忆实时评估系统。
随着电磁技术的发展和广泛应用,电磁辐射对健康的危害引起了人们的高度重视和关注。电磁辐射对神经系统的影响,尤其是对学习、记忆和认知功能的影响,是电磁生物效应领域的一个重要研究课题。以往的研究大多以啮齿类动物为对象,而啮齿类动物的研究相对成熟。随着研究的深入,使用非人灵长类动物作为实验对象的研究也开始进行。与啮齿类动物相比,猕猴等非人灵长类动物不仅大脑结构与人类更为相似,其学习和记忆过程也与人类类似。在本文中,我们介绍了一种用于在微波环境中实时评估猕猴工作记忆(WM)的行为测试系统。该系统由硬件和软件两部分组成。硬件包括四个模块:操作终端、控制终端、光信号传输和检测模块以及奖励反馈模块。软件程序可实现喂食学习任务、按键学习任务和延迟匹配到样本任务。该装置电磁兼容性好、结构简单可靠、操作简便,可用于微波环境下猕猴WM的实时评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioelectromagnetics
Bioelectromagnetics 生物-生物物理
CiteScore
4.60
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信