Bioelectromagnetics最新文献

筛选
英文 中文
Toward Safety Protocols for Peripheral Nerve Stimulation (PNS): A Computational and Experimental Approach. 外周神经刺激(PNS)的安全方案:一种计算和实验方法。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2025-01-01 DOI: 10.1002/bem.22533
Jinze Du, Andres Morales, Pragya Kosta, Gema Martinez-Navarrete, David J Warren, Eduardo Fernandez, Jean-Marie C Bouteiller, Douglas C McCreery, Gianluca Lazzi
{"title":"Toward Safety Protocols for Peripheral Nerve Stimulation (PNS): A Computational and Experimental Approach.","authors":"Jinze Du, Andres Morales, Pragya Kosta, Gema Martinez-Navarrete, David J Warren, Eduardo Fernandez, Jean-Marie C Bouteiller, Douglas C McCreery, Gianluca Lazzi","doi":"10.1002/bem.22533","DOIUrl":"https://doi.org/10.1002/bem.22533","url":null,"abstract":"<p><p>As the clinical applicability of peripheral nerve stimulation (PNS) expands, the need for PNS-specific safety criteria becomes pressing. This study addresses this need, utilizing a novel machine learning and computational bio-electromagnetics modeling platform to establish a safety criterion that captures the effects of fields and currents induced on axons. Our approach is comprised of three steps: experimentation, model creation, and predictive simulation. We collected high-resolution images of control and stimulated rat sciatic nerve samples at varying stimulation intensities and performed high-resolution image segmentation. These segmented images were used to train machine learning tools for the automatic classification of morphological properties of control and stimulated PNS nerves. Concurrently, we utilized our quasi-static Admittance Method-NEURON (AM-NEURON) computational platform to create realistic nerve models and calculate induced currents and charges, both critical elements of nerve safety criteria. These steps culminate in a cellular-level correlation between morphological changes and electrical stimulation parameters. This correlation informs the determination of thresholds of electrical parameters that are found to be associated with damage, such as maximum cell charge density. The proposed methodology and resulting criteria combine experimental findings with computational modeling to generate a safety threshold curve that captures the relationship between stimulation current and the potential for axonal damage. Although focused on a specific exposure condition, the approach presented here marks a step towards developing context-specific safety criteria in PNS neurostimulation, encouraging similar analyses across varied neurostimulation scenarios. Bioelectromagnetics.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":"e22533"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Development of a Reverberation Chamber for the Assessment of Biological Effects of Electromagnetic Energy Absorption in Mice. 用于评价小鼠电磁能量吸收生物效应的混响室的研制。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2025-01-01 DOI: 10.1002/bem.22539
Steve Iskra, Robert L McIntosh, Raymond J McKenzie, John V Frankland, Chao Deng, Emma Sylvester, Andrew W Wood, Rodney J Croft
{"title":"The Development of a Reverberation Chamber for the Assessment of Biological Effects of Electromagnetic Energy Absorption in Mice.","authors":"Steve Iskra, Robert L McIntosh, Raymond J McKenzie, John V Frankland, Chao Deng, Emma Sylvester, Andrew W Wood, Rodney J Croft","doi":"10.1002/bem.22539","DOIUrl":"10.1002/bem.22539","url":null,"abstract":"<p><p>In this paper, we present the design, RF-EMF performance, and a comprehensive uncertainty analysis of the reverberation chamber (RC) exposure systems that have been developed for the use of researchers at the University of Wollongong Bioelectromagnetics Laboratory, Australia, for the purpose of investigating the biological effects of RF-EMF in rodents. Initial studies, at 1950 MHz, have focused on investigating thermophysiological effects of RF exposure, and replication studies related to RF-EMF exposure and progression of Alzheimer's disease (AD) in mice predisposed to AD. The RC exposure system was chosen as it allows relatively unconstrained movement of animals during exposures which can have the beneficial effect of minimizing stress-related, non-RF-induced biological and behavioral changes in the animals. The performance of the RCs was evaluated in terms of the uniformity of the Whole-Body Average-Specific Absorption Rate (WBA-SAR) in mice for a given RF input power level. The expanded uncertainty in WBA-SAR estimates was found to be 3.89 dB. Validation of WBA-SAR estimates based on a selected number of temperature measurements in phantom mice found that the maximum ratio of the temperature-derived WBA-SAR to the computed WBA-SAR was 1.1 dB, suggesting that actual WBA-SAR is likely to be well within the expanded uncertainties.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":"e22539"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734383/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Machine Learning-Based Surrogate Models of Neural Activation Under Electrical Stimulation. 电刺激下基于机器学习的神经激活代理模型的表征。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2025-01-01 DOI: 10.1002/bem.22535
Laura Toni, Luca Pierantoni, Claudio Verardo, Simone Romeni, Silvestro Micera
{"title":"Characterization of Machine Learning-Based Surrogate Models of Neural Activation Under Electrical Stimulation.","authors":"Laura Toni, Luca Pierantoni, Claudio Verardo, Simone Romeni, Silvestro Micera","doi":"10.1002/bem.22535","DOIUrl":"10.1002/bem.22535","url":null,"abstract":"<p><p>Electrical stimulation of peripheral nerves via implanted electrodes has been shown to be a promising approach to restore sensation, movement, and autonomic functions across a wide range of illnesses and injuries. While in principle computational models of neuromodulation can allow the exploration of large parameter spaces and the automatic optimization of stimulation devices and strategies, their high time complexity hinders their use on a large scale. We recently proposed the use of machine learning-based surrogate models to estimate the activation of nerve fibers under electrical stimulation, producing a considerable speed-up with respect to biophysically accurate models of fiber excitation while retaining good predictivity. Here, we characterize the performance of four frequently employed machine learning algorithms and provide an illustrative example of their ability to generalize to unseen stimulation protocols, stimulating sites, and nerve sections. We then discuss how the ability to generalize to such scenarios is relevant to different optimization protocols, paving the way for the automatic optimization of neuromodulation applications.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":"e22535"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiofrequency Induced Time-Dependent Alterations in Gene Expression and Apoptosis in Glioblastoma Cell Line. 射频诱导胶质母细胞瘤细胞系基因表达和凋亡的时间依赖性改变。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2025-01-01 DOI: 10.1002/bem.22543
Mehmet Zahid Tuysuz, Handan Kayhan, Atiye Seda Yar Saglam, Fatih Senturk, Emin Umit Bagriacik, Munci Yagci, Ayse Gulnihal Canseven
{"title":"Radiofrequency Induced Time-Dependent Alterations in Gene Expression and Apoptosis in Glioblastoma Cell Line.","authors":"Mehmet Zahid Tuysuz, Handan Kayhan, Atiye Seda Yar Saglam, Fatih Senturk, Emin Umit Bagriacik, Munci Yagci, Ayse Gulnihal Canseven","doi":"10.1002/bem.22543","DOIUrl":"https://doi.org/10.1002/bem.22543","url":null,"abstract":"<p><p>The widespread use of wireless communication technologies has increased human exposure to radiofrequency electromagnetic fields (RF-EMFs). Considering the brain's close proximity to mobile phones and its entirely electrical transmission network, it emerges as the organ most profoundly impacted by the RF field. This study aims to investigate the potential effects of RF radiation on cell viability, apoptosis, and gene expressions in glioblastoma cells (U118-MG) at different exposure times (1, 24, and 48 h). To achieve this, we designed and implemented an in vitro RF exposure system operating at a frequency of 2.1 GHz, specifically for cell culture studies, with an average specific absorption rate (SAR) of 1.12 ± 0.18 W/kg determined through numerical dosimetry calculations. Results reveal a significant influence of a 48 h exposure to a 2.1 GHz RF field on U118-MG cell viability, gene expression, and the induction of caspase (CASP) dependent apoptosis. Notably, increased CASP3, CASP8, and CASP9 mRNA levels were observed after 24 and 48 h of RF treatment. However, only the 48 h RF exposure resulted in apoptotic cell death and a significant elevation in the BAX/BCL-2 ratio. This observed effect may be influenced by extended exposure durations surpassing the cell's doubling time. The increased BAX/BCL-2 ratio, which acts as a key switch for apoptosis, and the heterogeneous morphology of the astrocyte-derived U118-MG cell line may also play a role in this effect.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":"e22543"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recommendations for the Safe Application of Temporal Interference Stimulation in the Human Brain Part II: Biophysics, Dosimetry, and Safety Recommendations. 人脑时间干扰刺激安全应用的建议第二部分:生物物理学、剂量学和安全建议。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2025-01-01 DOI: 10.1002/bem.22536
Antonino M Cassarà, Taylor H Newton, Katie Zhuang, Sabine J Regel, Peter Achermann, Alvaro Pascual-Leone, Niels Kuster, Esra Neufeld
{"title":"Recommendations for the Safe Application of Temporal Interference Stimulation in the Human Brain Part II: Biophysics, Dosimetry, and Safety Recommendations.","authors":"Antonino M Cassarà, Taylor H Newton, Katie Zhuang, Sabine J Regel, Peter Achermann, Alvaro Pascual-Leone, Niels Kuster, Esra Neufeld","doi":"10.1002/bem.22536","DOIUrl":"10.1002/bem.22536","url":null,"abstract":"<p><p>Temporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, noninvasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and nonclinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. To inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations. To this end, we undertook a two-part effort to determine frequency-dependent thresholds for applied currents below which TIS is unlikely to pose risk to humans in terms of heating or unwanted stimulation. In Part II of this effort, described here, we draw on a previously compiled list (see Part I) of adverse effects (AEs) reported for transcranial direct/alternating current stimulation (tDCS/ACS), deep brain stimulation (DBS), and TIS to determine biophysics-informed exposure metrics for assessing safety. Using an in silico approach, we conduct multiphysics simulations of various tACS, DBS, and TIS exposure scenarios in an anatomically detailed head and brain model. By matching the stimulation in terms of the identified exposure metrics, we infer frequency-dependent TIS parameters that produce exposure conditions equivalent to those known to be safe for tACS and DBS. Based on the results of our simulations and existing knowledge regarding tES and DBS safety, we propose frequency-dependent thresholds below which TIS voltages and currents are unlikely to pose a risk to humans. Safety-related data from ongoing and future human studies are required to verify and refine the thresholds proposed here.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":"e22536"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Static Magnetic Field Exposure Causes Small Cell Cycle Disruptions and Changes in Reactive Oxygen Species Levels in Ionizing Radiation Exposed Human Neuroblastoma Cells. 静电磁场暴露导致电离辐射暴露的人神经母细胞瘤细胞小细胞周期中断和活性氧水平的变化。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2025-01-01 DOI: 10.1002/bem.22538
Valtteri Nieminen, Jan Seppälä, Tuomas Virén, Jukka Juutilainen, Jonne Naarala, Jukka Luukkonen
{"title":"Static Magnetic Field Exposure Causes Small Cell Cycle Disruptions and Changes in Reactive Oxygen Species Levels in Ionizing Radiation Exposed Human Neuroblastoma Cells.","authors":"Valtteri Nieminen, Jan Seppälä, Tuomas Virén, Jukka Juutilainen, Jonne Naarala, Jukka Luukkonen","doi":"10.1002/bem.22538","DOIUrl":"https://doi.org/10.1002/bem.22538","url":null,"abstract":"<p><p>Although static magnetic fields (SMFs) have been reported to induce only minimal biological effects, it has been proposed that they may alter the effects of other agents, such as ionizing radiation. We sham-exposed or exposed human SH-SY5Y neuroblastoma cells to 0.5-, 1.5-, 2.5-, or 3.5-mT SMFs for 24 h either before or after irradiation at 0, 0.4 or 2.0 Gy. After the exposures, cell cycle distribution (subG1 for apoptosis), reactive oxygen species (ROS) levels, caspase-3 activity, and clonogenic survival were assayed. Increase of G0/G1 and decrease of S phase cells was observed in samples exposed to a 3.5-mT SMF after irradiation. The same exposure schedule with a 1.5-mT SMF was associated with an increase of S phase cells, and an increase in ROS levels. Conversely, a decrease in ROS levels was observed in cells exposed to a 2.5-mT SMF before ionizing radiation. No cell cycle changes were observed with SMF exposures before irradiation. Caspase-3 activity or clonogenic survival was not affected by SMF exposures, irrespective of the exposure schedule. In conclusion, small changes in cell cycle distribution and ROS levels were observed in SH-SY5Y cells exposed to SMFs, with more prominent effects observed when SMF exposure was applied after irradiation. Our results suggest that SMF-induced effects show no linear dependency on magnetic flux density below 5 mT. Notably, SMF exposures did not significantly potentiate the effects of ionizing radiation but rather caused an independent additive effect. Bioelectromagnetics. 00:00-00, 2024.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":"e22538"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Physiologically Relevant Dehydration on the Dielectric Properties of Ground Beef. 生理相关脱水对牛肉介电性能的影响。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2025-01-01 DOI: 10.1002/bem.22534
Brendon C Besler, Ryan Baker, Hua Shen, Elise C Fear
{"title":"Effect of Physiologically Relevant Dehydration on the Dielectric Properties of Ground Beef.","authors":"Brendon C Besler, Ryan Baker, Hua Shen, Elise C Fear","doi":"10.1002/bem.22534","DOIUrl":"https://doi.org/10.1002/bem.22534","url":null,"abstract":"<p><p>Readily available animal tissue, such as ground beef, is a convenient material to represent the dielectric properties of biological tissue when validating microwave imaging and sensing hardware and techniques. The reliable use of these materials depends on the accurate characterization of their properties. In this work, the effect of physiologically relevant levels of dehydration on ex vivo tissue samples is quantified while controlling for variation within and between samples. Seven commercial ground beef samples (90% lean muscle, 10% fat) are dehydrated from 0.0% to 7.0% in 1.0% increments by weight. Dielectric measurements are collected using a conventional dielectric probe technique from 0.2 to 6 GHz. A linear mixed-effects model is used to control for within- and between-sample variation while modeling the effect of dehydration and dispersion across frequency. Significant ( <math> <semantics> <mrow><mrow><mi>p</mi> <mo><</mo> <mn>0.05</mn></mrow> </mrow> <annotation>$plt 0.05$</annotation></semantics> </math> ) changes are noted in both permittivity and conductivity due to sample dehydration. For a 1% change in weight due to dehydration, changes in permittivity (5.1%-5.6%) and conductivity (3.2%-5.7%) are reported. These changes are important for the use of large muscle-based phantoms in microwave sensing and imaging validation, as well as the feasibility of microwave hydration assessment. The statistical model used here can be applied to similar research questions and can augment existing frameworks for reporting dielectric measurements.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":"e22534"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating Human Fat and Muscle Conductivity From 100 Hz to 1 MHz Using Measurements and Modelling. 估计人体脂肪和肌肉电导率从100赫兹至1兆赫使用测量和建模。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2025-01-01 DOI: 10.1002/bem.22541
Otto Kangasmaa, Ilkka Laakso, Gernot Schmid
{"title":"Estimating Human Fat and Muscle Conductivity From 100 Hz to 1 MHz Using Measurements and Modelling.","authors":"Otto Kangasmaa, Ilkka Laakso, Gernot Schmid","doi":"10.1002/bem.22541","DOIUrl":"https://doi.org/10.1002/bem.22541","url":null,"abstract":"<p><p>The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects. This data set was used to create subject-specific forearm models, numerically solve an electrostatic forward problem, after which the tissue conductivities could be estimated by solving a probabilistic inverse problem. The electrical conductivity of skeletal muscle was found to be highly anisotropic at frequencies below 10 kHz, with conductivities of 0.13 (95% credible interval (CrI): 0.10-0.16) S/m perpendicular and 0.56 (CrI: 0.52-0.60) S/m parallel to the muscle fibre direction. This anisotropy decreased with increasing frequency with these values being 0.65 (CrI: 0.48-1.00) S/m and 0.78 (CrI: 0.72-0.85) S/m at 1 MHz. The conductivity of subcutaneous fat was found to be almost constant across the considered frequency range, with values of 0.21 (CrI: 0.12-0.31) S/m and 0.22 (CrI: 0.07-0.37) S/m at 10 kHz and 1 MHz, respectively. Our study provides robust uncertainty bounds for human tissue conductivity values, which are crucial in the computational assessment of human electromagnetic field exposure. Additionally, our findings are applicable to other fields of modelling such as medical stimulation or measurement technologies.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":"e22541"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extremely low-frequency electromagnetic fields targeting spleen modifies the populations of immunocytes in the spleen 针对脾脏的极低频电磁场改变了脾脏中免疫细胞的数量。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2024-12-17 DOI: 10.1002/bem.22532
Sijia Chen PhD, Wei Wei PhD, Ziang Wang MSc, Jiazhen Zhu MSc, Hailong Zhang PhD, Guihu Wang PhD, Ni Guo MSc, Jun Li PhD, Yanhua Mu PhD, Naming Zhang PhD, Zongfang Li PhD
{"title":"Extremely low-frequency electromagnetic fields targeting spleen modifies the populations of immunocytes in the spleen","authors":"Sijia Chen PhD,&nbsp;Wei Wei PhD,&nbsp;Ziang Wang MSc,&nbsp;Jiazhen Zhu MSc,&nbsp;Hailong Zhang PhD,&nbsp;Guihu Wang PhD,&nbsp;Ni Guo MSc,&nbsp;Jun Li PhD,&nbsp;Yanhua Mu PhD,&nbsp;Naming Zhang PhD,&nbsp;Zongfang Li PhD","doi":"10.1002/bem.22532","DOIUrl":"10.1002/bem.22532","url":null,"abstract":"<p>Our study focused on investigating the bioeffects of extremely low-frequency electromagnetic fields (ELF-EMFs) on the immune function of the spleen. We designed an electromagnetic instrument that can locally target on spleen, the spleens of mice were locally exposed to the ELF-EMF (50 Hz, 30 mT) for 14 days (4 h/day). Parallelly, the isolated splenic T cells were exposed to ELF-EMF (50 Hz, 15 mT) for 2 h. After the exposure, the splenocyte showed a reduced apoptosis rate. Among the splenocytes, the CD4<sup>+</sup> T cells and natural killer cells accumulated, the percentage of B cells decreased. In vitro study demonstrated that ELF-EMF induced the alteration of T cell subsets, showing an increased percentage of CD4<sup>+</sup> T cells and a decreased percentage of CD8<sup>+</sup> T cells. Within CD4<sup>+</sup> T cells, the population of T helper (Th) 17 cells increased, and the population of regulatory T cells (Treg) cells decreased. The enrichment of the nuclear factor (NF)-κB pathway in the splenic T cells was found to be reduced after exposure to ELF-EMF. Our findings suggest that ELF-EMF regulated the immune function of the spleen by changing the proportion of immune cells in the spleen. Specifically, the differentiation of spleen T cells was induced by ELF-EMF toward Th17 cells and inhibited by ELF-EMF into Treg cells. The NF-κB signaling pathway probably accounts for the effects of ELF-EMF on the spleen T cells.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22532","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Platycodon grandiflorum seeds exposure to static magnetic field on germination and early seedling growth 静磁场对桔梗种子萌发和幼苗早期生长的影响。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2024-12-15 DOI: 10.1002/bem.22530
Xingxing Yang PhD, Xin Wang, Xuhan Zhang, Jinlan Hu, Jing Wang, Yansong Chen PhD, Yong Zhu PhD
{"title":"Effects of Platycodon grandiflorum seeds exposure to static magnetic field on germination and early seedling growth","authors":"Xingxing Yang PhD,&nbsp;Xin Wang,&nbsp;Xuhan Zhang,&nbsp;Jinlan Hu,&nbsp;Jing Wang,&nbsp;Yansong Chen PhD,&nbsp;Yong Zhu PhD","doi":"10.1002/bem.22530","DOIUrl":"10.1002/bem.22530","url":null,"abstract":"<p>Effects of non-uniform upward (north) and downward (south) 300 mT static magnetic field (SMF) 14 days (24 h/day) treatment of Platycodon grandiflorum seeds on germination, seedling growth, enzyme activities, malondialdehyde (MDA) level and seedling chlorophyll content were investigated under laboratory conditions. Germination rate, index and potential from magnetically exposed Anhui and Hebei Platycodon grandiflorum seeds were significantly not affected (<i>p</i> &gt; 0.05), however, the values of these germination variables were notably higher in Anhui Platycodon grandiflorum seeds than Hebei seeds. Treatment of Hebei Platycodon grandiflorum seeds with 300 mT SMFs increased (<i>p</i> &lt; 0.05) the catalase (CAT), superoxide dismutase (SOD), α-and β-amylase activities and chlorophyll content significantly, the root length and MDA level of Anhui seeds were reduced, while the MDA level was had no obviously affect. The results suggest that non-uniform upward 300 mT SMF had potential to active the antioxidant enzymes (catalase and superoxide dismutase) and hydrolytic enzymes (α-and β-amylase activities) and increase the chlorophyll content of <i>Platycodon grandiflorus</i> seeds under laboratory conditions.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信