Jody C. Cantu PhD, Joseph W. Butterworth PhD, Jason A. Payne MSc, Ibtissam Echchgadda PhD
{"title":"暴露于 3.0 GHz 射频电磁场后初级海马神经元的转录反应","authors":"Jody C. Cantu PhD, Joseph W. Butterworth PhD, Jason A. Payne MSc, Ibtissam Echchgadda PhD","doi":"10.1002/bem.22517","DOIUrl":null,"url":null,"abstract":"<p>Exposure to radiofrequency (RF) electromagnetic fields (EMF) has been associated with the modulation of neuronal electrophysiology and synaptic plasticity. Given the potential of these changes to coincide with alterations in gene expression, this study investigated whether a transcriptional response would occur in neurons following exposure to RF-EMF, under both thermal and nonthermal conditions. Rat primary hippocampal neurons (PHNs) underwent either a single (one-time) or a multiple (3-times, once a day) exposures to RF-EMF (3.0 GHz, CW) at two different mean specific absorption rate (SAR) values of 0.57 W/kg or 5.91 W/kg, which induced a temperature change (Δ<i>T</i> °C) of approximately 0.3°C or 3.6°C, respectively. Alteration in transcription in the RF-EMF-exposed PHNs versus the sham counterparts was assessed at 0, 4, and 24 h postexposure via high-throughput RNA sequencing using Illumina HiSeq. 2000. A total of 20 differentially expressed genes (DEGs) exhibited significant upregulation due to RF-EMF exposure, observed only with the high SAR dose that induced a thermal rise. However, the expression of these DEGs was not significant at 24 h postexposure. Our findings confirmed a lack of nonthermal effects on gene expression under low RF-EMF exposure conditions as evaluated. Additionally, the results indicated a slight thermal effect of exposures at the dose nearing the standards threshold of 4 W/kg; however, the effect appeared to be transient. The study suggests that RF-EMF exposures at a level close to the standards threshold, despite inducing mild temperature elevations (i.e., 3–5°C above normal), would not trigger biologically critical cellular changes.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptional response of primary hippocampal neurons following exposure to 3.0 GHz radiofrequency electromagnetic fields\",\"authors\":\"Jody C. Cantu PhD, Joseph W. Butterworth PhD, Jason A. Payne MSc, Ibtissam Echchgadda PhD\",\"doi\":\"10.1002/bem.22517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Exposure to radiofrequency (RF) electromagnetic fields (EMF) has been associated with the modulation of neuronal electrophysiology and synaptic plasticity. Given the potential of these changes to coincide with alterations in gene expression, this study investigated whether a transcriptional response would occur in neurons following exposure to RF-EMF, under both thermal and nonthermal conditions. Rat primary hippocampal neurons (PHNs) underwent either a single (one-time) or a multiple (3-times, once a day) exposures to RF-EMF (3.0 GHz, CW) at two different mean specific absorption rate (SAR) values of 0.57 W/kg or 5.91 W/kg, which induced a temperature change (Δ<i>T</i> °C) of approximately 0.3°C or 3.6°C, respectively. Alteration in transcription in the RF-EMF-exposed PHNs versus the sham counterparts was assessed at 0, 4, and 24 h postexposure via high-throughput RNA sequencing using Illumina HiSeq. 2000. A total of 20 differentially expressed genes (DEGs) exhibited significant upregulation due to RF-EMF exposure, observed only with the high SAR dose that induced a thermal rise. However, the expression of these DEGs was not significant at 24 h postexposure. Our findings confirmed a lack of nonthermal effects on gene expression under low RF-EMF exposure conditions as evaluated. Additionally, the results indicated a slight thermal effect of exposures at the dose nearing the standards threshold of 4 W/kg; however, the effect appeared to be transient. The study suggests that RF-EMF exposures at a level close to the standards threshold, despite inducing mild temperature elevations (i.e., 3–5°C above normal), would not trigger biologically critical cellular changes.</p>\",\"PeriodicalId\":8956,\"journal\":{\"name\":\"Bioelectromagnetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectromagnetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bem.22517\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22517","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Transcriptional response of primary hippocampal neurons following exposure to 3.0 GHz radiofrequency electromagnetic fields
Exposure to radiofrequency (RF) electromagnetic fields (EMF) has been associated with the modulation of neuronal electrophysiology and synaptic plasticity. Given the potential of these changes to coincide with alterations in gene expression, this study investigated whether a transcriptional response would occur in neurons following exposure to RF-EMF, under both thermal and nonthermal conditions. Rat primary hippocampal neurons (PHNs) underwent either a single (one-time) or a multiple (3-times, once a day) exposures to RF-EMF (3.0 GHz, CW) at two different mean specific absorption rate (SAR) values of 0.57 W/kg or 5.91 W/kg, which induced a temperature change (ΔT °C) of approximately 0.3°C or 3.6°C, respectively. Alteration in transcription in the RF-EMF-exposed PHNs versus the sham counterparts was assessed at 0, 4, and 24 h postexposure via high-throughput RNA sequencing using Illumina HiSeq. 2000. A total of 20 differentially expressed genes (DEGs) exhibited significant upregulation due to RF-EMF exposure, observed only with the high SAR dose that induced a thermal rise. However, the expression of these DEGs was not significant at 24 h postexposure. Our findings confirmed a lack of nonthermal effects on gene expression under low RF-EMF exposure conditions as evaluated. Additionally, the results indicated a slight thermal effect of exposures at the dose nearing the standards threshold of 4 W/kg; however, the effect appeared to be transient. The study suggests that RF-EMF exposures at a level close to the standards threshold, despite inducing mild temperature elevations (i.e., 3–5°C above normal), would not trigger biologically critical cellular changes.
期刊介绍:
Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.