Bioelectromagnetics最新文献

筛选
英文 中文
A comparative study of simulated electric fields of transcranial magnetic stimulation targeting different cortical motor regions 针对不同皮层运动区的经颅磁刺激模拟电场比较研究
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2024-09-16 DOI: 10.1002/bem.22523
Jack Jiaqi Zhang PhD, Bella Bingbing Zhang MSc, Zhongfei Bai PhD, Kenneth N. K. Fong PhD
{"title":"A comparative study of simulated electric fields of transcranial magnetic stimulation targeting different cortical motor regions","authors":"Jack Jiaqi Zhang PhD,&nbsp;Bella Bingbing Zhang MSc,&nbsp;Zhongfei Bai PhD,&nbsp;Kenneth N. K. Fong PhD","doi":"10.1002/bem.22523","DOIUrl":"10.1002/bem.22523","url":null,"abstract":"<p>This computational simulation study investigates the strength of transcranial magnetic stimulation (TMS)-induced electric fields (EF) in primary motor cortex (M1) and secondary motor areas. Our results reveal high interindividual variability in the strength of TMS-induced EF responses in secondary motor areas, relative to the stimulation threshold in M1. Notably, the activation of the supplementary motor area requires high-intensity stimulation, which could be attributed to the greater scalp-to-cortex distance observed over this area. These findings emphasize the importance of individualized planning using computational simulation for optimizing neuromodulation strategies targeting the cortical motor system.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinearities and timescales in neural models of temporal interference stimulation 时间干扰刺激神经模型中的非线性和时标。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2024-08-26 DOI: 10.1002/bem.22522
Tom Plovie MSc, Ruben Schoeters PhD, Thomas Tarnaud PhD, Wout Joseph PhD, Emmeric Tanghe PhD
{"title":"Nonlinearities and timescales in neural models of temporal interference stimulation","authors":"Tom Plovie MSc,&nbsp;Ruben Schoeters PhD,&nbsp;Thomas Tarnaud PhD,&nbsp;Wout Joseph PhD,&nbsp;Emmeric Tanghe PhD","doi":"10.1002/bem.22522","DOIUrl":"10.1002/bem.22522","url":null,"abstract":"&lt;p&gt;In temporal interference (TI) stimulation, neuronal cells react to two interfering sinusoidal electric fields with a slightly different frequency (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${f}_{1}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${f}_{2}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in the range of about 1–4 kHz, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;∣&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;∣&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $| {f}_{1}-{f}_{2}| $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in the range of about 1–100 Hz). It has been previously observed that for the same input intensity, the neurons do not react to a purely sinusoidal signal at &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${f}_{1}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; or &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${f}_{2}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. This study seeks a better understanding of the largely unknown mechanisms underlying TI neuromodulation. To this end, single-compartment models are used to simulate computationally the response of neurons to the sinusoidal and TI waveform. This study compares five different neuron models: Hodgkin-Huxley (HH), Frankenhaeuser–Huxley (FH),","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stimulus effects of extremely low-frequency electric field exposure on calcium oscillations in a human cortical spheroid 极低频电场暴露对人体皮质球体内钙振荡的刺激效应。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2024-08-25 DOI: 10.1002/bem.22521
Atsushi Saito PhD, Takeo Shiina PhD, Yoichi Sekiba PhD
{"title":"Stimulus effects of extremely low-frequency electric field exposure on calcium oscillations in a human cortical spheroid","authors":"Atsushi Saito PhD,&nbsp;Takeo Shiina PhD,&nbsp;Yoichi Sekiba PhD","doi":"10.1002/bem.22521","DOIUrl":"10.1002/bem.22521","url":null,"abstract":"<p>High-intensity, low-frequency (1 Hz to 100 kHz) electric and magnetic fields (EF and MF) cause electrical excitation of the nervous system via an induced EF (iEF) in living tissue. However, the biological properties and thresholds of stimulus effects on synchronized activity in a three-dimensional (3D) neuronal network remain uncertain. In this study, we evaluated changes in neuronal network activity during extremely low-frequency EF (ELF-EF) exposure by measuring intracellular calcium ([Ca<sup>2+</sup>]<sub><i>i</i></sub>) oscillations, which reflect neuronal network activity. For ELF-EF exposure experiments, we used a human cortical spheroid (hCS), a 3D-cultured neuronal network generated from human induced pluripotent stem cell (hiPSC)-derived cortical neurons. A 50 Hz sinusoidal ELF-EF exposure modulated [Ca<sup>2+</sup>]<sub><i>i</i></sub> oscillations with dependencies on exposure intensity and duration. Based on the experimental setup and results, the iEF distribution inside the hCS was estimated using high-resolution numerical dosimetry. The numerical estimation revealed threshold values ranging between 255–510 V/m (peak) and 131–261 V/m (average). This indicates that thresholds of neuronal excitation in the hCS were equivalent to those of a thin nerve fiber.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22521","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A real-time working memory evaluation system for macaques in microwave fields 微波场中猕猴工作记忆实时评估系统。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2024-08-04 DOI: 10.1002/bem.22519
Bowen Li MSc, Xueyan Zhang PhD, Nan Qiao MSc, Jiawei Chen MSc, Weijie Bi, Weijia Zhi PhD, Lizhen Ma PhD, Congcong Miao, Lifeng Wang PhD, Yong Zou PhD, Xiangjun Hu PhD
{"title":"A real-time working memory evaluation system for macaques in microwave fields","authors":"Bowen Li MSc,&nbsp;Xueyan Zhang PhD,&nbsp;Nan Qiao MSc,&nbsp;Jiawei Chen MSc,&nbsp;Weijie Bi,&nbsp;Weijia Zhi PhD,&nbsp;Lizhen Ma PhD,&nbsp;Congcong Miao,&nbsp;Lifeng Wang PhD,&nbsp;Yong Zou PhD,&nbsp;Xiangjun Hu PhD","doi":"10.1002/bem.22519","DOIUrl":"10.1002/bem.22519","url":null,"abstract":"<p>With the development and widespread application of electromagnetic technology, the health hazards of electromagnetic radiation have attracted much attention and concern. The effect of electromagnetic radiation on the nervous system, especially on learning, memory, and cognitive functions, is an important research topic in the field of electromagnetic biological effects. Most previous studies were conducted with rodents, which are relatively mature. As research has progressed, studies using non-human primates as experimental subjects have been carried out. Compared to rodents, non-human primates such as macaques not only have brain structures more similar to those of humans but also exhibit learning and memory processes that are similar. In this paper, we present a behavioral test system for the real-time evaluation of the working memory (WM) of macaques in a microwave environment. The system consists of two parts: hardware and software. The hardware consists of four modules: the operation terminal, the control terminal, the optical signal transmission, and detection module and the reward feedback module. The software program can implement the feeding learning task, the button-pressing learning task, and the delayed match-to-sample task. The device is useful for the real-time evaluation of the WM of macaques in microwave environments, showing good electromagnetic compatibility, a simple and reliable structure, and easy operation.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 7","pages":"338-347"},"PeriodicalIF":1.8,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimates and measurements of radiofrequency exposures in smart-connected homes 智能互联家庭中射频暴露的估计和测量。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2024-07-18 DOI: 10.1002/bem.22518
Kenneth Joyner PhD, Michael Milligan LLM, Phillip Knipe PhD
{"title":"Estimates and measurements of radiofrequency exposures in smart-connected homes","authors":"Kenneth Joyner PhD,&nbsp;Michael Milligan LLM,&nbsp;Phillip Knipe PhD","doi":"10.1002/bem.22518","DOIUrl":"10.1002/bem.22518","url":null,"abstract":"<p>The aim of this research was to quantify the levels of radiofrequency electromagnetic energy (RF-EME) in a residential home/apartment equipped with a range of wireless devices, often referred to as internet of things (IoT) devices or smart devices and subsequently develop a tool that could be useful for estimating the levels of RF-EME in a domestic environment. Over the course of 3 years measurements were performed in peoples' homes on a total of 43 devices across 16 device categories. Another 12 devices were measured in detail in a laboratory setup. In all a total of 55 individual devices across 23 device categories were measured. Based on this measurement data we developed predictive software that showed that even with a single device in 23 device categories operating near maximum they would, in total, produce exposures at a distance of 1 m of 0.17% of the ICNIRP (2020) public exposure limits. Measurements were also made in two separate smart apartments—one contained over 50 IoT devices and a second with over 100 IoT devices with the devices driven as hard as could reasonably be achieved. The respective 6-min average exposure level recorded were 0.0077% and 0.44% of the ICNIRP (2020) 30-min average public exposure limit.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 7","pages":"329-337"},"PeriodicalIF":1.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22518","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional response of primary hippocampal neurons following exposure to 3.0 GHz radiofrequency electromagnetic fields 暴露于 3.0 GHz 射频电磁场后初级海马神经元的转录反应
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2024-06-21 DOI: 10.1002/bem.22517
Jody C. Cantu PhD, Joseph W. Butterworth PhD, Jason A. Payne MSc, Ibtissam Echchgadda PhD
{"title":"Transcriptional response of primary hippocampal neurons following exposure to 3.0 GHz radiofrequency electromagnetic fields","authors":"Jody C. Cantu PhD,&nbsp;Joseph W. Butterworth PhD,&nbsp;Jason A. Payne MSc,&nbsp;Ibtissam Echchgadda PhD","doi":"10.1002/bem.22517","DOIUrl":"10.1002/bem.22517","url":null,"abstract":"<p>Exposure to radiofrequency (RF) electromagnetic fields (EMF) has been associated with the modulation of neuronal electrophysiology and synaptic plasticity. Given the potential of these changes to coincide with alterations in gene expression, this study investigated whether a transcriptional response would occur in neurons following exposure to RF-EMF, under both thermal and nonthermal conditions. Rat primary hippocampal neurons (PHNs) underwent either a single (one-time) or a multiple (3-times, once a day) exposures to RF-EMF (3.0 GHz, CW) at two different mean specific absorption rate (SAR) values of 0.57 W/kg or 5.91 W/kg, which induced a temperature change (Δ<i>T</i> °C) of approximately 0.3°C or 3.6°C, respectively. Alteration in transcription in the RF-EMF-exposed PHNs versus the sham counterparts was assessed at 0, 4, and 24 h postexposure via high-throughput RNA sequencing using Illumina HiSeq. 2000. A total of 20 differentially expressed genes (DEGs) exhibited significant upregulation due to RF-EMF exposure, observed only with the high SAR dose that induced a thermal rise. However, the expression of these DEGs was not significant at 24 h postexposure. Our findings confirmed a lack of nonthermal effects on gene expression under low RF-EMF exposure conditions as evaluated. Additionally, the results indicated a slight thermal effect of exposures at the dose nearing the standards threshold of 4 W/kg; however, the effect appeared to be transient. The study suggests that RF-EMF exposures at a level close to the standards threshold, despite inducing mild temperature elevations (i.e., 3–5°C above normal), would not trigger biologically critical cellular changes.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 7","pages":"348-362"},"PeriodicalIF":1.8,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exposure assessment and cytogenetic biomonitoring study of workers occupationally exposed to extremely low-frequency magnetic fields 对职业暴露于极低频磁场的工人进行暴露评估和细胞遗传学生物监测研究。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2024-06-11 DOI: 10.1002/bem.22506
Ha Nguyen PhD, Giovani Vandewalle MD, Birgit Mertens PhD, Jean-Francois Collard PhD, Maurice Hinsenkamp MD, PhD, Luc Verschaeve PhD, Veronique Feipel PhD, Isabelle Magne PhD, Martine Souques PhD, Véronique Beauvois IR, Maryse Ledent MPE
{"title":"Exposure assessment and cytogenetic biomonitoring study of workers occupationally exposed to extremely low-frequency magnetic fields","authors":"Ha Nguyen PhD,&nbsp;Giovani Vandewalle MD,&nbsp;Birgit Mertens PhD,&nbsp;Jean-Francois Collard PhD,&nbsp;Maurice Hinsenkamp MD, PhD,&nbsp;Luc Verschaeve PhD,&nbsp;Veronique Feipel PhD,&nbsp;Isabelle Magne PhD,&nbsp;Martine Souques PhD,&nbsp;Véronique Beauvois IR,&nbsp;Maryse Ledent MPE","doi":"10.1002/bem.22506","DOIUrl":"10.1002/bem.22506","url":null,"abstract":"<p>Human cytogenetic biomonitoring (HCB) has long been used to evaluate the potential effects of work environments on the DNA integrity of workers. However, HCB studies on the genotoxic effects of occupational exposure to extremely low-frequency electromagnetic fields (ELF-MFs) were limited by the quality of the exposure assessment. More specifically, concerns were raised regarding the method of exposure assessment, the selection of exposure metrics, and the definition of exposure group. In this study, genotoxic effects of occupational exposure to ELF-MFs were assessed on peripheral blood lymphocytes of 88 workers from the electrical sector using the comet and cytokinesis-block micronucleus assay, considering workers' actual exposure over three consecutive days. Different methods were applied to define exposure groups. Overall, the summarized ELF-MF data indicated a low exposure level in the whole study population. It also showed that relying solely on job titles might misclassify 12 workers into exposure groups. We proposed combining hierarchical agglomerative clustering on personal exposure data and job titles to define exposure groups. The final results showed that occupational MF exposure did not significantly induce more genetic damage. Other factors such as age or past smoking rather than ELF-MF exposure could affect the cytogenetic test outcomes.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 6","pages":"260-280"},"PeriodicalIF":1.8,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22506","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulsed electromagnetic fields used in regenerative medicine: An in vitro study of the skin wound healing proliferative phase 再生医学中使用的脉冲电磁场:皮肤伤口愈合增殖期的体外研究。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2024-05-28 DOI: 10.1002/bem.22508
Léa Bedja-Iacona MSc, Riccardo Scorretti PhD, Marie Ducrot MSc, Christian Vollaire PhD, Laure Franqueville PhD
{"title":"Pulsed electromagnetic fields used in regenerative medicine: An in vitro study of the skin wound healing proliferative phase","authors":"Léa Bedja-Iacona MSc,&nbsp;Riccardo Scorretti PhD,&nbsp;Marie Ducrot MSc,&nbsp;Christian Vollaire PhD,&nbsp;Laure Franqueville PhD","doi":"10.1002/bem.22508","DOIUrl":"10.1002/bem.22508","url":null,"abstract":"<p>Numerous studies have demonstrated the efficacy of extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) in accelerating the wound healing process in vitro and in vivo. Our study focuses specifically on ELF-PEMF applied with the Magnomega® device and aims to assess their effect during the main stages of the proliferative phase of dermal wound closure, in vitro. Thus, after the characterization of the EMFs delivered by the Magnomega® unit, primary culture of human dermal fibroblasts (HDFs) were exposed, or not for the control culture, to 10–12 and 100 Hz ELF-PEMF. These parameters are used in clinical practice by physiotherapists in order to enhance healing of dermal lesions in patients. HDFs proliferation was first assessed and revealed an increase in the expression of one of the two genetic markers of cell proliferation tested (PCNA and MKI67), after initial exposure of the cells to 10–12 Hz PEMF. Next, migration of HDFs was investigated by performing scratch assays on HDF layers. The observed wound closure kinetics corroborate the early organization of actin stress fibers that was revealed in the cytoplasm of HDFs exposed to 100 Hz ELF-PEMF. Also, maturation of HDFs into myofibroblasts was significantly increased in cells exposed to 10–12 or to 100 Hz PEMF. The present study is the first to demonstrate, in vitro, an early stimulation of HDFs, after their exposure to ELF-PEMF delivered by the Magnomega® device, which could contribute to an acceleration of the wound healing process.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 6","pages":"293-309"},"PeriodicalIF":1.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22508","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic field exposure monitoring of commercial 28-GHz band 5G base stations in Tokyo, Japan 日本东京商用 28 GHz 频段 5G 基站的电磁场暴露监测。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2024-05-22 DOI: 10.1002/bem.22505
Sen Liu PhD, Kazuhiro Tobita, Teruo Onishi PhD, Masao Taki PhD, Soichi Watanabe PhD
{"title":"Electromagnetic field exposure monitoring of commercial 28-GHz band 5G base stations in Tokyo, Japan","authors":"Sen Liu PhD,&nbsp;Kazuhiro Tobita,&nbsp;Teruo Onishi PhD,&nbsp;Masao Taki PhD,&nbsp;Soichi Watanabe PhD","doi":"10.1002/bem.22505","DOIUrl":"10.1002/bem.22505","url":null,"abstract":"<p>Fifth generation (5G) wireless communication is being rolled out around the world. In this work, the latest radio frequency electromagnetic field (EMF) exposure measurement results on commercial 28-GHz band 5G base stations (BSs) deployed in the urban area of Tokyo, Japan, are presented. The measurements were conducted under realistic traffic conditions with a 5G smartphone and using both omnidirectional and horn antennas. First and foremost, in all cases, the electric-field (E-field) intensity is much lower (&lt;−38 dB) than the exposure limits. The E-field intensities for traffic-off cases do not show any significant difference between the two antennas with the maximum being 3.6 dB. For traffic-on cases, the omnidirectional antenna can undesirably capture the radio wave from the smartphone in some cases, resulting in a 7–13 dB higher E-field intensity than that using the horn antenna. We also present comparative results between 4G long term evolution BSs and sub-6-GHz band and 28-GHz band 5G BSs and provide recommendations on acquiring meaningful EMF exposure data. This work is a further step toward the standardization of the measurement method regarding quasi-millimeter/millimeter wave 5G BSs.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 6","pages":"281-292"},"PeriodicalIF":1.8,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation of mobile phone use recall in the multinational MOBI-kids study 多国 MOBI-kids 研究中的手机使用回忆验证。
IF 1.8 3区 生物学
Bioelectromagnetics Pub Date : 2024-05-22 DOI: 10.1002/bem.22507
Luuk van Wel, Anke Huss, Hans Kromhout, Franco Momoli, Daniel Krewski, Chelsea E. Langer, Gemma Castaño-Vinyals, Michael Kundi, Milena Maule, Lucia Miligi, Siegal Sadetzki, Alex Albert, Juan Alguacil, Nuria Aragones, Francesc Badia, Revital Bruchim, Geertje Goedhart, Patricia de Llobet, Kosuke Kiyohara, Noriko Kojimahara, Brigitte Lacour, Maria Morales-Suarez-Varela, Katja Radon, Thomas Remen, Tobias Weinmann, Martine Vrijheid, Elisabeth Cardis, Roel Vermeulen, MOBI-Kids consortium
{"title":"Validation of mobile phone use recall in the multinational MOBI-kids study","authors":"Luuk van Wel,&nbsp;Anke Huss,&nbsp;Hans Kromhout,&nbsp;Franco Momoli,&nbsp;Daniel Krewski,&nbsp;Chelsea E. Langer,&nbsp;Gemma Castaño-Vinyals,&nbsp;Michael Kundi,&nbsp;Milena Maule,&nbsp;Lucia Miligi,&nbsp;Siegal Sadetzki,&nbsp;Alex Albert,&nbsp;Juan Alguacil,&nbsp;Nuria Aragones,&nbsp;Francesc Badia,&nbsp;Revital Bruchim,&nbsp;Geertje Goedhart,&nbsp;Patricia de Llobet,&nbsp;Kosuke Kiyohara,&nbsp;Noriko Kojimahara,&nbsp;Brigitte Lacour,&nbsp;Maria Morales-Suarez-Varela,&nbsp;Katja Radon,&nbsp;Thomas Remen,&nbsp;Tobias Weinmann,&nbsp;Martine Vrijheid,&nbsp;Elisabeth Cardis,&nbsp;Roel Vermeulen,&nbsp;MOBI-Kids consortium","doi":"10.1002/bem.22507","DOIUrl":"10.1002/bem.22507","url":null,"abstract":"<p>Potential differential and non-differential recall error in mobile phone use (MPU) in the multinational MOBI-Kids case–control study were evaluated. We compared self-reported MPU with network operator billing record data up to 3 months, 1 year, and 2 years before the interview date from 702 subjects aged between 10 and 24 years in eight countries. Spearman rank correlations, Kappa coefficients and geometric mean ratios (GMRs) were used. No material differences in MPU recall estimates between cases and controls were observed. The Spearman rank correlation coefficients between self-reported and recorded MPU in the most recent 3 months were 0.57 and 0.59 for call number and for call duration, respectively. The number of calls was on average underestimated by the participants (GMR = 0.69), while the duration of calls was overestimated (GMR = 1.59). Country, years since start of using a mobile phone, age at time of interview, and sex did not appear to influence recall accuracy for either call number or call duration. A trend in recall error was seen with level of self-reported MPU, with underestimation of use at lower levels and overestimation of use at higher levels for both number and duration of calls. Although both systematic and random errors in self-reported MPU among participants were observed, there was no evidence of differential recall error between cases and controls. Nonetheless, these sources of exposure measurement error warrant consideration in interpretation of the MOBI-Kids case–control study results on the association between children's use of mobile phones and potential brain cancer risk.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 7","pages":"313-328"},"PeriodicalIF":1.8,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22507","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信