{"title":"James C. Lin","authors":"","doi":"10.1002/bem.22496","DOIUrl":"10.1002/bem.22496","url":null,"abstract":"","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 1","pages":"3"},"PeriodicalIF":1.9,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138828139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorenza Patrignoni PhD, Annabelle Hurtier, Rosa Orlacchio, Alexandre Joushomme PhD, Florence Poulletier de Gannes, Philippe Lévêque RD, Delia Arnaud-Cormos, Hamid Reza Revzani RD, Walid Mahfouf, André Garenne, Yann Percherancier RD, Isabelle Lagroye
{"title":"Evaluation of mitochondrial stress following ultraviolet radiation and 5G radiofrequency field exposure in human skin cells","authors":"Lorenza Patrignoni PhD, Annabelle Hurtier, Rosa Orlacchio, Alexandre Joushomme PhD, Florence Poulletier de Gannes, Philippe Lévêque RD, Delia Arnaud-Cormos, Hamid Reza Revzani RD, Walid Mahfouf, André Garenne, Yann Percherancier RD, Isabelle Lagroye","doi":"10.1002/bem.22495","DOIUrl":"10.1002/bem.22495","url":null,"abstract":"<p>Whether human cells are impacted by environmental electromagnetic fields (EMF) is still a matter of debate. With the deployment of the fifth generation (5G) of mobile communication technologies, the carrier frequency is increasing and the human skin becomes the main biological target. Here, we evaluated the impact of 5G-modulated 3.5 GHz radiofrequency (RF) EMF on mitochondrial stress in human fibroblasts and keratinocytes that were exposed for 24 h at specific absorption rate of 0.25, 1, and 4 W/kg. We assessed cell viability, mitochondrial reactive oxygen species (ROS) production, and membrane polarization. Knowing that human skin is the main target of environmental ultraviolet (UV), using the same read-out, we investigated whether subsequent exposure to 5G signal could alter the capacity of UV-B to damage skin cells. We found a statistically significant reduction in mitochondrial ROS concentration in fibroblasts exposed to 5G signal at 1 W/kg. On the contrary, the RF exposure slightly but statistically significantly enhanced the effects of UV-B radiation specifically in keratinocytes at 0.25 and 1 W/kg. No effect was found on mitochondrial membrane potential or apoptosis in any cell types or exposure conditions suggesting that the type and amplitude of the observed effects are very punctual.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 3","pages":"110-129"},"PeriodicalIF":1.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meng Gao MSc, Huaiyu Peng MSc, Yiran Hou MSc, Xianghui Wang PhD, Jing Li PhD, Hongxing Qi PhD, Fang Kuang PhD, Jie Zhang PhD
{"title":"Electromagnetic pulse induced blood-brain barrier breakdown through tight junction opening in rats","authors":"Meng Gao MSc, Huaiyu Peng MSc, Yiran Hou MSc, Xianghui Wang PhD, Jing Li PhD, Hongxing Qi PhD, Fang Kuang PhD, Jie Zhang PhD","doi":"10.1002/bem.22494","DOIUrl":"10.1002/bem.22494","url":null,"abstract":"<p>The blood-brain barrier (BBB) is the main obstacle to hydrophilic and large molecules to enter the brain, maintaining the stability of the central nervous system (CNS). But many environmental factors may affect the permeability and structure of the BBB. Electromagnetic pulses (EMP) irradiation has been proven to enhance the permeability of the BBB, but the specific mechanism is still unclear. To explore the potential mechanism of EMP-induced BBB opening, this study investigated the permeability, fine structure and the proteins expression of the tight junction (TJ) of the BBB in the rats exposed to EMP. Using the leakage of fluorescein isothiocyanate-labeled dextran with different molecular mass under different field intensity of EMP exposure, we found that the tracer passing through the BBB is size-dependent in the rat exposed to EMP as field intensity increased. Transmission electron microscopy showed TJ of the endothelial cells in the EMP-exposed group was open, compared with the sham-irradiated group. But the levels of TJ proteins including ZO-1, claudin-5, or occludin were not changed as indicated by western blot. These data suggest that EMP induce BBB opening in a field intensity-dependent manner and probably through dysfunction of TJ proteins instead of their expression. Our findings increase the understanding of the mechanism for EMP working on the brain and are helpful for CNS protection against EMP.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 3","pages":"130-138"},"PeriodicalIF":1.9,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative analyses of RBC movement in whole blood exposed to DC and ELF electric field","authors":"Miki Kanemaki MEng, Hisae O. Shimizu PhD, Hiroshi Inujima PhD, Takeo Miyake PhD, Koichi Shimizu PhD","doi":"10.1002/bem.22493","DOIUrl":"10.1002/bem.22493","url":null,"abstract":"<p>For the study of biological effects of direct current (DC) and extremely low frequency (ELF) electric fields, we have quantitatively analyzed red blood cell (RBC) movement in whole blood. Considering the inhomogeneous distribution of electric fields in vivo, five different electric field distributions were generated under a microscope. For theoretical analyses, we assumed electrophoresis and dielectrophoresis as basic motive forces and obtained the spatial distribution of blood cell velocity. The RBC velocity was measured using video image analysis. The spatial dependence of the velocity showed good agreement with that predicted by theoretical analysis. This result suggests the validity of the theoretical model based on electrophoresis and dielectrophoresis for the study of ELF electric field exposure to inhomogeneous animal and human bodies. Next, using the same measurement system, we attempted to find the electric field strength at which these effects occur. The threshold values were found to be 0.40 and 1.6 kV/m, respectively, for DC and AC electric field exposures. Furthermore, we investigated the reproducibility of the field effects in more realistic conditions of human exposure. The RBCs in microchannels were exposed to the electric field generated in capacitive coupling using electrodes separated by an air gap. Even in the new condition, similar effects were observed, which also verified the validity of the analysis described above. These results will provide useful information for the safety assessment of field exposure and for the future biomedical applications of electric fields to manipulate RBCs in vivo.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 4","pages":"159-170"},"PeriodicalIF":1.9,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22493","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138685660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Radiofrequency dielectric spectroscopy study: Effects of pH, hydrogen bond donors and acceptors on the attachment of spectrin skeleton to the lipid membrane of erythrocytes","authors":"Ivan T. Ivanov DSc, Boyana K. Paarvanova PhD","doi":"10.1002/bem.22491","DOIUrl":"10.1002/bem.22491","url":null,"abstract":"<p>Band 3 protein and glycophorin C are the two major integral proteins of the lipid membrane of human red blood cells (RBCs). They are attached from below to a network of elastic filamentous spectrin, the third major RBC membrane protein. The binding properties of the attachments to spectrin affect the shape and deformability of RBCs. We addressed band 3 and glycophorin C attachments to spectrin by measuring the strength of two recently discovered radiofrequency dielectric relaxations, β<sub>sp</sub> (1.4 MHz) and γ1<sub>sp</sub> (9 MHz), that are observable as changes in the complex admittance of RBCs in medium. In medium at pH 5.2, and also in media with protic substances (formamide, methylformamide, or urea), the β<sub>sp</sub> relaxation became inhibited that is attributable to detachment of glycophorin C from spectrin. In medium at pH 9.2, we observed inhibition of γ1<sub>sp</sub> relaxation attributable to detachment of band 3 from spectrin, as also was seen in media with aprotic substances difluoropyridine, dimethylsolfoxide, dimethylformamide, acetone, sodium tetrakis(4-fluorophenyl)borate), chlorpromazine, thioridazine and trifluopiperazine. The viscogenic cosolvents (glycerol, ethylene glycol, or i-erythritol) inhibited both the β<sub>sp</sub> and γ1<sub>sp</sub> relaxations and significantly lowered their characteristic frequencies. Our observations indicate that the glycophorin C attachment to spectrin has nucleophilic centers whose saturation disconnects this attachment and inhibits the β<sub>sp</sub> relaxation, whereas at band 3-spectrin attachment site, it is the saturation of electrophilic centers that weakens this attachment and inhibits the γ1<sub>sp</sub> relaxation.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 2","pages":"58-69"},"PeriodicalIF":1.9,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138443696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raymond J. McKenzie BSc, Steve Iskra PhD, Phillip Knipe PhD
{"title":"Assessment of radio frequency fields in the 2.45 GHz band produced by smart home devices","authors":"Raymond J. McKenzie BSc, Steve Iskra PhD, Phillip Knipe PhD","doi":"10.1002/bem.22492","DOIUrl":"10.1002/bem.22492","url":null,"abstract":"<p>This paper describes the assessment of the electromagnetic fields produced by consumer “smart” devices used to control and monitor everyday equipment and appliances in a modern “smart” home. The assessment is based on the careful measurement of fields produced by a range of such devices in a laboratory environment configured to operate in a condition simulating high user activity. All devices included in this study operate in the 2.4 GHz band utilizing either Wi-Fi or Bluetooth connectivity. Overall results indicate very low levels of electromagnetic fields for all IoT smart devices in terms of human exposure safety standards (typically much less than 1%) with very low duty cycles (also less than 1%) resulting in even lower time-averaged exposure levels. These low levels of exposure, along with rapid reduction of levels with distance from the devices, suggests that the cumulative effect of multiple devices in a “smart” home are not significant.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 4","pages":"184-192"},"PeriodicalIF":1.9,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22492","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138443695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luke A. Smith MSc, Jaedon D. Bem MSc, Xiaojing Lv PhD, Antonio Lauto PhD, Ashour Sliow PhD, Zhiyuan Ma MD, David A. Mahns PhD, Carolyn Berryman PhD, Mark R. Hutchinson PhD, Christophe Fumeaux PhD, Giuseppe C. Tettamanzi PhD
{"title":"Investigation of the mechanisms for wireless nerve stimulation without active electrodes","authors":"Luke A. Smith MSc, Jaedon D. Bem MSc, Xiaojing Lv PhD, Antonio Lauto PhD, Ashour Sliow PhD, Zhiyuan Ma MD, David A. Mahns PhD, Carolyn Berryman PhD, Mark R. Hutchinson PhD, Christophe Fumeaux PhD, Giuseppe C. Tettamanzi PhD","doi":"10.1002/bem.22486","DOIUrl":"10.1002/bem.22486","url":null,"abstract":"<p>Electric-field stimulation of neuronal activity can be used to improve the speed of regeneration for severed and damaged nerves. Most techniques, however, require invasive electronic circuitry which can be uncomfortable for the patient and can damage surrounding tissue. A recently suggested technique uses a graft-antenna—a metal ring wrapped around the damaged nerve—powered by an external magnetic stimulation device. This technique requires no electrodes and internal circuitry with leads across the skin boundary or internal power, since all power is provided wirelessly. This paper examines the microscopic basic mechanisms that allow the magnetic stimulation device to cause neural activation via the graft-antenna. A computational model of the system was created and used to find that under magnetic stimulation, diverging electric fields appear at the metal ring's edges. If the magnetic stimulation is sufficient, the gradients of these fields can trigger neural activation in the nerve. In-vivo measurements were also performed on rat sciatic nerves to support the modeling finding that direct contact between the antenna and the nerve ensures neural activation given sufficient magnetic stimulation. Simulations also showed that the presence of a thin gap between the graft-antenna and the nerve does not preclude neural activation but does reduce its efficacy.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"44 7-8","pages":"181-191"},"PeriodicalIF":1.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22486","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71420416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mihály Vöröslakos MD, PhD, Omid Yaghmazadeh PhD, Leeor Alon PhD, Daniel K. Sodickson MD, PhD, György Buzsáki MD, PhD
{"title":"Brain-implanted conductors amplify radiofrequency fields in rodents: Advantages and risks","authors":"Mihály Vöröslakos MD, PhD, Omid Yaghmazadeh PhD, Leeor Alon PhD, Daniel K. Sodickson MD, PhD, György Buzsáki MD, PhD","doi":"10.1002/bem.22489","DOIUrl":"10.1002/bem.22489","url":null,"abstract":"<p>Over the past few decades, daily exposure to radiofrequency (RF) fields has been increasing due to the rapid development of wireless and medical imaging technologies. Under extreme circumstances, exposure to very strong RF energy can lead to heating of body tissue, even resulting in tissue injury. The presence of implanted devices, moreover, can amplify RF effects on surrounding tissue. Therefore, it is important to understand the interactions of RF fields with tissue in the presence of implants, in order to establish appropriate wireless safety protocols, and also to extend the benefits of medical imaging to increasing numbers of people with implanted medical devices. This study explored the neurological effects of RF exposure in rodents implanted with neuronal recording electrodes. We exposed freely moving and anesthetized rats and mice to 950 MHz RF energy while monitoring their brain activity, temperature, and behavior. We found that RF exposure could induce fast onset firing of single neurons without heat injury. In addition, brain implants enhanced the effect of RF stimulation resulting in reversible behavioral changes. Using an optical temperature measurement system, we found greater than tenfold increase in brain temperature in the vicinity of the implant. On the one hand, our results underline the importance of careful safety assessment for brain-implanted devices, but on the other hand, we also show that metal implants may be used for neurostimulation if brain temperature can be kept within safe limits.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 3","pages":"139-155"},"PeriodicalIF":1.9,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50156957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasaman Ardeshirpour PhD, Ethan D. Cohen PhD, Seth J. Seidman MSc, Biniyam Taddese PhD, Tayeb Zaidi MSc, Howard Bassen MSc
{"title":"Effect of direct voltage induction by low-frequency security systems on neurostimulator lead","authors":"Yasaman Ardeshirpour PhD, Ethan D. Cohen PhD, Seth J. Seidman MSc, Biniyam Taddese PhD, Tayeb Zaidi MSc, Howard Bassen MSc","doi":"10.1002/bem.22485","DOIUrl":"10.1002/bem.22485","url":null,"abstract":"<p>Low-frequency (LF) security systems, such as antitheft electronic article surveillance (EAS) gates emit strong magnetic fields that could potentially interfere with neurostimulator operation. Some patients reported pain and shocking sensations near EAS gates, even after they turned off their pulse generator. To investigate the direct voltage induction of EAS systems on neurostimulator leads, we evaluated voltages induced by two EAS systems (14 kHz continuous wave or 58 kHz pulsed) on a 40 cm sacral neurostimulator lead formed in a circular loop attached to a pulse generator that was turned off. The lead and neurostimulator were mounted in a saline-filled rectangular phantom placed within electromagnetic fields emitted by EAS systems. The measured voltage waveforms were applied to computational models of spinal nerve axons to predict whether these voltages may evoke action potentials. Additional in vitro testing was performed on the semicircular lead geometry, to study the effect of lead geometry on EAS induced voltages. While standard neurostimulator testing per ISO 14708-3:2017 recommends electromagnetic compatibility testing with LF magnetic fields for induction of malfunctions of the active electronic circuitry while generating intended stimulating pulses, our results show that close to the EAS antenna frames, the induced voltage on the lead could be strong enough to evoke action potentials, even with the pulse generator turned off. This work suggests that patient reports of pain and shocking sensations when near EAS systems could also be correlated with the direct EAS-induced voltage on neurostimulator lead.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 2","pages":"70-81"},"PeriodicalIF":1.9,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49688635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}