Antonino M Cassarà, Taylor H Newton, Katie Zhuang, Sabine J Regel, Peter Achermann, Alvaro Pascual-Leone, Niels Kuster, Esra Neufeld
{"title":"人脑时间干扰刺激安全应用的建议第二部分:生物物理学、剂量学和安全建议。","authors":"Antonino M Cassarà, Taylor H Newton, Katie Zhuang, Sabine J Regel, Peter Achermann, Alvaro Pascual-Leone, Niels Kuster, Esra Neufeld","doi":"10.1002/bem.22536","DOIUrl":null,"url":null,"abstract":"<p><p>Temporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, noninvasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and nonclinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. To inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations. To this end, we undertook a two-part effort to determine frequency-dependent thresholds for applied currents below which TIS is unlikely to pose risk to humans in terms of heating or unwanted stimulation. In Part II of this effort, described here, we draw on a previously compiled list (see Part I) of adverse effects (AEs) reported for transcranial direct/alternating current stimulation (tDCS/ACS), deep brain stimulation (DBS), and TIS to determine biophysics-informed exposure metrics for assessing safety. Using an in silico approach, we conduct multiphysics simulations of various tACS, DBS, and TIS exposure scenarios in an anatomically detailed head and brain model. By matching the stimulation in terms of the identified exposure metrics, we infer frequency-dependent TIS parameters that produce exposure conditions equivalent to those known to be safe for tACS and DBS. Based on the results of our simulations and existing knowledge regarding tES and DBS safety, we propose frequency-dependent thresholds below which TIS voltages and currents are unlikely to pose a risk to humans. Safety-related data from ongoing and future human studies are required to verify and refine the thresholds proposed here.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":"e22536"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733664/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recommendations for the Safe Application of Temporal Interference Stimulation in the Human Brain Part II: Biophysics, Dosimetry, and Safety Recommendations.\",\"authors\":\"Antonino M Cassarà, Taylor H Newton, Katie Zhuang, Sabine J Regel, Peter Achermann, Alvaro Pascual-Leone, Niels Kuster, Esra Neufeld\",\"doi\":\"10.1002/bem.22536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Temporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, noninvasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and nonclinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. To inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations. To this end, we undertook a two-part effort to determine frequency-dependent thresholds for applied currents below which TIS is unlikely to pose risk to humans in terms of heating or unwanted stimulation. In Part II of this effort, described here, we draw on a previously compiled list (see Part I) of adverse effects (AEs) reported for transcranial direct/alternating current stimulation (tDCS/ACS), deep brain stimulation (DBS), and TIS to determine biophysics-informed exposure metrics for assessing safety. Using an in silico approach, we conduct multiphysics simulations of various tACS, DBS, and TIS exposure scenarios in an anatomically detailed head and brain model. By matching the stimulation in terms of the identified exposure metrics, we infer frequency-dependent TIS parameters that produce exposure conditions equivalent to those known to be safe for tACS and DBS. Based on the results of our simulations and existing knowledge regarding tES and DBS safety, we propose frequency-dependent thresholds below which TIS voltages and currents are unlikely to pose a risk to humans. Safety-related data from ongoing and future human studies are required to verify and refine the thresholds proposed here.</p>\",\"PeriodicalId\":8956,\"journal\":{\"name\":\"Bioelectromagnetics\",\"volume\":\"46 1\",\"pages\":\"e22536\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733664/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectromagnetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/bem.22536\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bem.22536","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Recommendations for the Safe Application of Temporal Interference Stimulation in the Human Brain Part II: Biophysics, Dosimetry, and Safety Recommendations.
Temporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, noninvasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and nonclinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. To inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations. To this end, we undertook a two-part effort to determine frequency-dependent thresholds for applied currents below which TIS is unlikely to pose risk to humans in terms of heating or unwanted stimulation. In Part II of this effort, described here, we draw on a previously compiled list (see Part I) of adverse effects (AEs) reported for transcranial direct/alternating current stimulation (tDCS/ACS), deep brain stimulation (DBS), and TIS to determine biophysics-informed exposure metrics for assessing safety. Using an in silico approach, we conduct multiphysics simulations of various tACS, DBS, and TIS exposure scenarios in an anatomically detailed head and brain model. By matching the stimulation in terms of the identified exposure metrics, we infer frequency-dependent TIS parameters that produce exposure conditions equivalent to those known to be safe for tACS and DBS. Based on the results of our simulations and existing knowledge regarding tES and DBS safety, we propose frequency-dependent thresholds below which TIS voltages and currents are unlikely to pose a risk to humans. Safety-related data from ongoing and future human studies are required to verify and refine the thresholds proposed here.
期刊介绍:
Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.