Sijia Chen PhD, Wei Wei PhD, Ziang Wang MSc, Jiazhen Zhu MSc, Hailong Zhang PhD, Guihu Wang PhD, Ni Guo MSc, Jun Li PhD, Yanhua Mu PhD, Naming Zhang PhD, Zongfang Li PhD
{"title":"针对脾脏的极低频电磁场改变了脾脏中免疫细胞的数量。","authors":"Sijia Chen PhD, Wei Wei PhD, Ziang Wang MSc, Jiazhen Zhu MSc, Hailong Zhang PhD, Guihu Wang PhD, Ni Guo MSc, Jun Li PhD, Yanhua Mu PhD, Naming Zhang PhD, Zongfang Li PhD","doi":"10.1002/bem.22532","DOIUrl":null,"url":null,"abstract":"<p>Our study focused on investigating the bioeffects of extremely low-frequency electromagnetic fields (ELF-EMFs) on the immune function of the spleen. We designed an electromagnetic instrument that can locally target on spleen, the spleens of mice were locally exposed to the ELF-EMF (50 Hz, 30 mT) for 14 days (4 h/day). Parallelly, the isolated splenic T cells were exposed to ELF-EMF (50 Hz, 15 mT) for 2 h. After the exposure, the splenocyte showed a reduced apoptosis rate. Among the splenocytes, the CD4<sup>+</sup> T cells and natural killer cells accumulated, the percentage of B cells decreased. In vitro study demonstrated that ELF-EMF induced the alteration of T cell subsets, showing an increased percentage of CD4<sup>+</sup> T cells and a decreased percentage of CD8<sup>+</sup> T cells. Within CD4<sup>+</sup> T cells, the population of T helper (Th) 17 cells increased, and the population of regulatory T cells (Treg) cells decreased. The enrichment of the nuclear factor (NF)-κB pathway in the splenic T cells was found to be reduced after exposure to ELF-EMF. Our findings suggest that ELF-EMF regulated the immune function of the spleen by changing the proportion of immune cells in the spleen. Specifically, the differentiation of spleen T cells was induced by ELF-EMF toward Th17 cells and inhibited by ELF-EMF into Treg cells. The NF-κB signaling pathway probably accounts for the effects of ELF-EMF on the spleen T cells.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22532","citationCount":"0","resultStr":"{\"title\":\"Extremely low-frequency electromagnetic fields targeting spleen modifies the populations of immunocytes in the spleen\",\"authors\":\"Sijia Chen PhD, Wei Wei PhD, Ziang Wang MSc, Jiazhen Zhu MSc, Hailong Zhang PhD, Guihu Wang PhD, Ni Guo MSc, Jun Li PhD, Yanhua Mu PhD, Naming Zhang PhD, Zongfang Li PhD\",\"doi\":\"10.1002/bem.22532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Our study focused on investigating the bioeffects of extremely low-frequency electromagnetic fields (ELF-EMFs) on the immune function of the spleen. We designed an electromagnetic instrument that can locally target on spleen, the spleens of mice were locally exposed to the ELF-EMF (50 Hz, 30 mT) for 14 days (4 h/day). Parallelly, the isolated splenic T cells were exposed to ELF-EMF (50 Hz, 15 mT) for 2 h. After the exposure, the splenocyte showed a reduced apoptosis rate. Among the splenocytes, the CD4<sup>+</sup> T cells and natural killer cells accumulated, the percentage of B cells decreased. In vitro study demonstrated that ELF-EMF induced the alteration of T cell subsets, showing an increased percentage of CD4<sup>+</sup> T cells and a decreased percentage of CD8<sup>+</sup> T cells. Within CD4<sup>+</sup> T cells, the population of T helper (Th) 17 cells increased, and the population of regulatory T cells (Treg) cells decreased. The enrichment of the nuclear factor (NF)-κB pathway in the splenic T cells was found to be reduced after exposure to ELF-EMF. Our findings suggest that ELF-EMF regulated the immune function of the spleen by changing the proportion of immune cells in the spleen. Specifically, the differentiation of spleen T cells was induced by ELF-EMF toward Th17 cells and inhibited by ELF-EMF into Treg cells. The NF-κB signaling pathway probably accounts for the effects of ELF-EMF on the spleen T cells.</p>\",\"PeriodicalId\":8956,\"journal\":{\"name\":\"Bioelectromagnetics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22532\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectromagnetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bem.22532\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22532","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Extremely low-frequency electromagnetic fields targeting spleen modifies the populations of immunocytes in the spleen
Our study focused on investigating the bioeffects of extremely low-frequency electromagnetic fields (ELF-EMFs) on the immune function of the spleen. We designed an electromagnetic instrument that can locally target on spleen, the spleens of mice were locally exposed to the ELF-EMF (50 Hz, 30 mT) for 14 days (4 h/day). Parallelly, the isolated splenic T cells were exposed to ELF-EMF (50 Hz, 15 mT) for 2 h. After the exposure, the splenocyte showed a reduced apoptosis rate. Among the splenocytes, the CD4+ T cells and natural killer cells accumulated, the percentage of B cells decreased. In vitro study demonstrated that ELF-EMF induced the alteration of T cell subsets, showing an increased percentage of CD4+ T cells and a decreased percentage of CD8+ T cells. Within CD4+ T cells, the population of T helper (Th) 17 cells increased, and the population of regulatory T cells (Treg) cells decreased. The enrichment of the nuclear factor (NF)-κB pathway in the splenic T cells was found to be reduced after exposure to ELF-EMF. Our findings suggest that ELF-EMF regulated the immune function of the spleen by changing the proportion of immune cells in the spleen. Specifically, the differentiation of spleen T cells was induced by ELF-EMF toward Th17 cells and inhibited by ELF-EMF into Treg cells. The NF-κB signaling pathway probably accounts for the effects of ELF-EMF on the spleen T cells.
期刊介绍:
Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.